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Abstract: 

This paper presents the design and implementation of a vision-guided robotic drawing 
system using the Quanser QArm. The objective is to enable the robot to autonomously 
replicate human facial sketches on a whiteboard by integrating image processing, path 
planning, and real-time control. The system architecture combines Python-based image 
acquisition and contour extraction via OpenCV with trajectory generation in MATLAB. 

A closed-loop control framework is implemented in Simulink using the QUARC interface for 
accurate motion execution. SolidWorks is used for designing custom end-effector mounts 
and drawing tools. While the control performance and trajectory tracking are stable and 
reliable, some limitations were observed in the precision of physical sketch output due to 
mechanical constraints and end-effector orientation. This work demonstrates the feasibility 
of merging computer vision with robotic motion control for artistic tasks, highlighting 
potential improvements in trajectory decomposition, gripper design, and multi-axis 
compensation. 

Keywords: Path Planning, Robot Control, Quanser, Image Processing, Kinematics, Simulink, 
Python, OpenCV. 
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1. Introduction 
The report outlines the nature of the project and how it relates to industry, as well as 

the problem that motivated the objective-setting to solve it. Moreover, this report also 
discusses the delimitations that were found during the development process. 

1.1 Background  
In recent years, the deployment of robotic systems has expanded significantly across 

various domains, ranging from industrial manufacturing to service-based applications and 
even traditional manual fields. It is now increasingly common to observe robotic arms being 
utilized in areas once considered unlikely for automation, such as culinary arts, domestic 
environments, and creative practices like drawing and painting [1]. Forecasts indicate that 
robotics will continue to permeate daily life, becoming a standard presence in routine tasks 
[2]. 

This growing integration of robotics has facilitated new modes of operation, particularly in 
contexts aligned with the industry 4.0 paradigm, where human-robot collaboration plays a 
central role in enhancing productivity and worker safety [3]. Among the many types of robots 
available, robotic arms have gained prominence due to their versatility, precision, and ability 
to operate within shared environments. They can perform complex actions, such as 
manipulating tools or replicating human-like motions which can assist humans in 
completing intricate tasks and reducing physical strain [4]. 

While earlier research in robotics primarily addressed basic automation and motion control, 
current developments focus on more advanced capabilities. These include learning, 
decision-making, and problem-solving powered by artificial intelligence, enabling robotic 
arms to engage in fields such as visual arts. As such technologies evolve, a compelling 
question emerges: can a robotic arm be programmed to create artistic works, such as 
sketches or portraits, with the sensitivity and fluidity typically attributed to human artists? 
[5] 

1.2 Problem Statement and Objectives 
Despite significant advances in robotic automation and visual perception, enabling a robotic 
system to accurately reproduce artistic sketches from visual inputs, particularly human 
faces remain a multifaceted challenge. Robotic arms traditionally lack the fine-grained 
compliance needed for consistent surface contact, often resulting in incomplete line 
segments, excessive pressure, or deviation from intended contours [1], [5]. These limitations 
are exacerbated when working on non-horizontal planes or transforming 2D pixel data into 
real-time 3D motion trajectories, especially without tactile sensing or force feedback [3]. 
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Furthermore, existing systems in artistic robotics often emphasize simulation-based 
performance or fixed-environment setups, which do not fully reflect the complexities of real-
world operation, including joint inaccuracies, drawing board irregularities, and variable 
marker wear [2]. The difficulty lies not only in generating path trajectories from images, but 
also in ensuring that these paths are executed with sufficient mechanical precision and 
compliance to yield consistent visual output [4]. 

The objective of this project is to develop an integrated robotic sketching system that bridges 
the gap between image processing and physical actuation. Specifically, the system aims to: 

Acquire facial images using a live webcam feed and extract clean contour lines via OpenCV-
based preprocessing. Transform 2D sketches into 3D paths that conform to the operational 
limits of the Quanser QArm. Implement a custom-designed spring-loaded marker holder 
that allows safe yet stable contact with the sketching surface, compensating for board 
curvature and marker tip variability [4]. Introduce an adaptive X-axis offset correction 
mechanism based on real-time Y and Z coordinates to minimize uneven pressure or dragging 
across different facial regions. Execute and monitor the drawing using a closed-loop 
Simulink + QUARC control environment, incorporating trajectory generation, inverse 
kinematics, and forward kinematics modules. Evaluate results through both simulation 
trajectory plots and real-world drawing comparisons, ensuring repeatability and control 
accuracy. 

Through this approach, the system demonstrates the potential of combining visual 
intelligence, compliant hardware, and real-time control to enable robotic sketching in 
unconstrained physical environments, a key capability for future robot-human creative 
collaboration [1], [2], [5]. 

 

Figure1.1: Objective of the Project 
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1.3 Overview 
This report presents the development of a robotic sketching system using the Quanser 
QArm, where image processing and robotic control techniques are combined to replicate 
human facial sketches on a whiteboard. The work begins by outlining the theoretical 
background, including robot kinematics, control methods, and the image processing 
approach used to generate sketch-like paths. It then reviews related research before 
describing the methodology followed to capture facial images, process them into drawable 
contours, and convert them into 3D trajectories. The hardware and software integration, 
including real-time communication with the QArm, are explained in the design section. The 
system’s performance is evaluated using both simulation and real-world drawing results, 
highlighting strengths and limitations. Finally, the report discusses conclusions and possible 
future improvements, including advanced AI processing and enhanced control strategies. 

2. Theoretical Frame of Reference 
This part of the project is dedicated to clarifying the fundamental concepts that support the 
development of the sketching system. It provides essential theoretical knowledge on robotic 
control, image processing, and system integration, which will be expanded upon in later 
sections to show how they have been applied in the project. 

2.1 Quanser: 
The robot selected to achieve the objectives of this work is the Quanser QArm, a 4-DOF 
articulated robotic manipulator developed for research and academic applications. It is 
equipped with precise servo motors, a tendon-driven gripper, and integrated current 
sensing, providing a compact yet capable platform for implementing real-time control and 
trajectory planning. With its highly accurate positioning and smooth motion, the QArm is well 
suited for tasks that require spatial precision such as drawing. Figure 2.1 illustrates key 
specifications of the QArm robot used in this study [6]. 

The QArm is connected to the host system using QUARC real-time software, which allows 
direct programming in Simulink and supports closed-loop control using encoder and current 
feedback. The robot can follow pre-defined paths using trajectory commands defined in 
MATLAB or Simulink and transmitted in real-time via USB. Its integrated sensors and modular 
design also support learning-based control strategies like lead-through teaching or vision-
guided motion [7]. 

The system enables position control with PWM or analog signals and allows custom 
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Figure 1.1: Specification of Quanser 

development of inverse and forward kinematics models. These capabilities are essential in 
transforming 2D image contours into accurate 3D movements on the drawing surface.  

2.2 Software 
For this project, the selection of software is essential not only for robotic control but also for 
the image acquisition, pre-processing, path planning, and real-time simulation-execution 
cycle. The two main tools used in this work are MATLAB/Simulink (for control modeling and 
communication with the robot) and OpenCV (for image processing and sketch extraction). 

2.2.1 MATLAB/Simulink and QUARC 
MATLAB and Simulink are developed by MathWorks and provide a powerful numerical 
computing environment and a model-based design platform, respectively. In this project, 
Simulink is used as the primary environment for designing and simulating control 
algorithms, including inverse kinematics, trajectory generation, and impedance control 
modules for the QArm robot. This graphical programming environment allows users to 
design complex control systems visually without manually writing extensive code [8]. 

The connection between Simulink and the physical QArm hardware is achieved through the 
QUARC real-time control software, developed by Quanser. QUARC provides blocks that 
integrate directly into Simulink models, allowing real-time execution, sensor data 
acquisition, and actuator command streaming. This makes it possible to synchronize the 
QArm’s motor control with processed visual data, enabling closed-loop operation [9]. This 
modular setup enables real-time trajectory testing, visualization, and debugging, and makes 
the system robust for experimental robotics. Additionally, trajectory logging and live plotting 
in MATLAB facilitate validation and tuning of motion behavior. 
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2.2.2 OpenCV 
In this project, OpenCV serves as the primary tool for image processing tasks. As an open-
source library originally developed by Intel, OpenCV offers a wide range of computer vision 
algorithms that support the objectives of this work. It enables operations such as 
thresholding, edge detection, and image segmentation, which are essential for transforming 
facial images into simplified sketch-like contours. The version utilized for this project is 
OpenCV 3.4.2 [10].  

2.3 Vision System and Camera Integration  
The vision system is a crucial component of this project, responsible for capturing and 
interpreting visual information used to guide the robotic drawing process. In this work, a 2D 
RGB image is acquired through a camera and processed using OpenCV functions to extract 
the relevant features of a human face. This involves converting the raw image into a format 
that isolates edges and contours suitable for trajectory generation. The RGB image is treated 
as a 3D matrix, where the first two dimensions represent pixel locations and the third holds 
intensity values across red, green, and blue channels. Each pixel carries an intensity value 
ranging from 0 to 255, which defines the color and brightness at that location. These values 
are processed to enhance contrast and remove noise [10]. 

To enable real-time image acquisition and sketch extraction, this project incorporates the 
Intel RealSense D415 RGB-D camera, which plays a central role in capturing facial data and 
translating it into trajectories for robotic drawing. The D415 combines a high-resolution RGB 
sensor with depth perception capabilities using an infrared projector and stereo depth 
sensors. It delivers a depth resolution of up to 1280×720 and a depth range of approximately 
0.3 to 10 meters, which is sufficient for close-range facial imaging under indoor lighting 
conditions. The camera is mounted rigidly in front of the subject and calibrated to ensure its 
output aligns with the QArm’s reachable workspace on the drawing board. Figure 2.3 
illustrates key specifications of the Intel Camera used in this study [11]. 

 

Figure 2.3: Specification of Intel Real Sense Camera [11] 
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2.4 Image Processing  
In this project, edge detection plays a central role in extracting the primary contours from 
facial images. Edge detection involves identifying points where image brightness changes 
sharply, which often corresponds to object boundaries. Among the various methods 
explored, the Sobel and Prewitt operators were tested due to their simplicity and 
effectiveness in detecting gradients in specific directions [12]. Preprocessing techniques 
such as Gaussian blur and bilateral filtering were applied beforehand to reduce noise. 
Bilateral filtering was effective at smoothing the image while preserving important edge 
features [13]. The Canny edge detector was ultimately selected for its multi-stage process 
combining Gaussian smoothing, gradient calculation, non-maximum suppression, and 
hysteresis thresholding, which together yield clean and continuous edges [14]. This method 
has become a widely used standard in computer vision for generating binary sketches 
suitable for robotic path planning [15]. 

Segmentation methods were used to separate the object of interest (face) from the 
background. Thresholding-based segmentation was implemented, including global and 
adaptive thresholding approaches [16]. Global thresholding methods such as Otsu’s 
algorithm rely on image histograms to determine a single threshold value, whereas adaptive 
thresholding dynamically changes the threshold based on local intensity variation [17]. 
These approaches were useful when dealing with varied lighting conditions. Other 
segmentation techniques like watershed and clustering were also considered for their 
capability to delineate complex shapes and objects within the image [18]. Thresholding 
proved to be effective in isolating facial features from cluttered scenes, enabling the robot 
to focus only on relevant drawing regions. 

Other alternatives like the SUSAN detector, Moravec operator, and Trajkovic's fast corner 
detector were evaluated for completeness but were not deployed in the final version [19]. 

2.5 Control of the Robot  
After processing the image, the robot needs to execute movements along a path to draw the 
final sketch. To perform these movements in the most effective manner, it is essential to 
consider concepts regarding how these movements are carried out, their limitations, and 
how they can be controlled. 

2.5.1 Type of Joints, Movement, and Interpolation 
Robotic arms consist of rigid links connected by joints, which are actuated to produce 
motion. The two primary joint types are prismatic (translational) and revolute (rotational), 
and combinations of these form the architecture of various robot configurations. The 
arrangement of joints and degrees of freedom (DOF) directly influences a robot’s ability to 
reach different poses and perform tasks in complex environments. Common robotic 
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structures include Cartesian, cylindrical, spherical, SCARA, and anthropomorphic 
configurations, as illustrated in Figure 2.5.1. Each configuration suits specific applications 
depending on workspace shape, required flexibility, and control complexity [20]. For 
instance, anthropomorphic robots typically offer higher dexterity and are capable of 
navigating obstacles through redundant DOFs. 

 

Figure 2.5.1: Common robot configurations including Cartesian, Cylindrical, Polar, SCARA, and Anthropomorphic designs 
[20] 

2.5.2 Controllers and Feedback 
Controllers play a fundamental role in robotic systems by processing input signals and 
generating corresponding actuator commands that guide robot behavior. They serve as the 
decision-making core, executing pre-programmed algorithms based on sensory data and 
user-defined objectives. The design of these control systems must accommodate 
environmental uncertainty and task complexity, which is why flexible controller structures 
are often used in modern robotics [21]. To ensure task precision, feedback mechanisms are 
employed to monitor the actual state of the robot and compare it to the desired setpoint. The 
resulting error is then used to adjust commands and improve accuracy. 

Robotic systems typically utilize either open-loop or closed-loop control structures. Open-
loop control is suitable for repetitive or non-critical tasks where feedback is unnecessary, 
whereas closed-loop systems are better suited for dynamic environments that require 
continuous adaptation. Closed-loop control, also known as feedback control, employs 
sensors to monitor position, torque, or force, which helps maintain desired performance 
even when disturbances occur [22]. Vision controllers are a special case of feedback 
systems, where cameras provide real-time environmental input, enhancing accuracy in 
positioning and manipulation tasks [23]. In this project, such feedback is crucial for 
maintaining consistent marker pressure and trajectory tracking. Figure 2.5.2 illustrates a 
typical closed-loop control system architecture, highlighting the role of each component in 
error correction and task execution [24]. 
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Figure 2.5.2: Closed-loop control system schematic showing setpoint tracking with feedback signal comparison [24]. 

2.5.3 Trajectory Planning 
Trajectory planning refers to the process of determining the time-dependent position, 
velocity, and acceleration profiles that a robot manipulator must follow to execute a desired 
motion smoothly and accurately. As part of motion planning, it bridges the gap between path 
planning and real-time control by considering kinematic and dynamic constraints such as 
joint limits, velocity bounds, and acceleration profiles. Trajectory planning is typically done 
in either Cartesian space or joint space, and the trajectory itself can be designed as either 
point-to-point or continuous motion depending on the application. Figure 2.5.3 illustrates 
this structure, showing how trajectory planning fits within the larger framework of robotic 
motion planning. 

 

Figure 2.5.3: Relationship of trajectory planning within motion planning [25] 

3. Literature Review 
The use of vision-guided robotic manipulators for drawing and sketching has evolved 
significantly over the years, driven by advancements in computer vision, kinematics, and 
control systems. Early robotic arms were primarily developed for industrial tasks in 
hazardous or repetitive environments. The first known industrial robot patent, attributed to 
George Devol in 1954, laid the groundwork for the development of programmable 
manipulators capable of performing complex tasks autonomously [26]. The definition of 
robots as “reprogrammable, multifunctional manipulators” [27] has since expanded to 
include collaborative robots, or cobots, which can safely interact with humans in shared 
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environments. Their adoption is rapidly growing across domains such as education, 
manufacturing, and even art [28], [29]. 

One of the earliest milestones in robotic drawing dates to the 18th century, when Pierre 
Jaquet Droz created mechanical automata capable of producing sketches [30]. In the mid-
20th century, Jean Tinguely’s kinetic sculptures and Harold Cohen’s AARON software 
represented early explorations into generative robotic art [31], [32]. AARON implemented 
rule-based logic to generate stylized line drawings autonomously [33]. Later developments 
saw robotic systems integrate face detection and image processing to generate realistic 
portraits. For example, Calinon et al. introduced a robot that could detect human faces and 
iteratively reconstruct sketches [34], while Moura’s Artsbot explored abstract drawing using 
mobile platforms [35]. These early efforts established the viability of combining vision and 
path generation. 

More recent advancements focus on enhancing the artistic quality, accuracy, and 
interactivity of robotic drawing systems. Aguilar and Lipson developed a 6-DOF robot that 
used internal feedback to adjust brushstroke styles [36], and Lu et al. integrated vision 
feedback to create pen-and-ink sketches [37]. Gasparetto et al. emphasized trajectory 
optimization to enhance the quality of robot-generated artwork [38]. Grosser’s work 
introduced an auditory feedback loop, allowing robots to respond to sound environments 
during sketching [39]. Tresset et al. built facial sketching systems that continuously 
improved using visual feedback [40], [41], while Jean-Pierre et al. used industrial robots for 
detailed portrait drawing [42]. 

Industrial-grade systems have also attempted to replicate human brush techniques. 
Lindemeier and Deussen’s e-David used stroke layering and non-photorealistic rendering 
(NPR) for expressive art creation, combining feedback control with aesthetic rules [43]. 
Subsequent efforts extended to colorful painting systems [44], graffiti-capable collaborative 
robots [45], and interactive games like tic-tac-toe with robotic partners [46]. Chen et al. used 
redundant robots to ensure better adaptability in spray painting tasks [47]. The RobotArt 
competition, launched by Andrew Conru in 2016, further pushed the boundaries by inviting 
teams to build robotic artists capable of producing expressive work [48]. 

The diversity of recent research showcases both fixed-arm and mobile platforms. Galea and 
Kry created a tethered drone that performed stippling on canvases [49], while Shih and Lin 
developed trajectory control for mobile sketching robots [50]. Luo et al. and Dong et al. both 
leveraged SCARA arms for stylized image replication using coordinate-based algorithms 
[51], [52]. Song et al. used a 7-DOF impedance-controlled manipulator to enable surface-
adaptive drawing [53], and Vempati et al. demonstrated 3D spray painting using autonomous 
UAVs like PaintCopter [54]. 
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Recent works have also addressed system integration and user interaction. Karimov et al. 
produced full-color artworks using traditional paint media [55], and Igno et al. developed 
interactive systems for realistic acrylic painting using region-based analysis [56]. Human-
robot collaborative art, exemplified by Sougwen Chung, highlights the increasing synergy 
between human creativity and robotic precision [57]. Scalera et al. further explored adaptive 
trajectory planning for spray-based robots, with variants using tools like knives, sponges, 
and watercolors [58],[59]. 

Although a wide range of robotic artists exists, most systems focus either on visual 
perception or on motion planning, rarely both in an integrated form. This project contributes 
by using a QArm manipulator with an Intel RealSense camera to perform 3D-to-2D image 
conversion, force-controlled gripping, and trajectory-executed sketching on a physical 
board, thereby bridging existing gaps in combined vision, force, and motion integration. 

4. Methodology  
To ensure the project proceeds in a structured and efficient manner, the Design Science 
Research Methodology (DSRM) has been selected. This methodology provides a systematic 
framework for creating and evaluating technical artefacts, particularly in engineering and 
design contexts. It supports innovation through iterative development and testing, aligning 
closely with the vision-based robotic sketching objectives of this project. The DSRM, as 
proposed by Peffers et al. [60], consists of six core steps: (1) identifying the problem and 
motivation, (2) defining the objectives for a solution, (3) designing and developing the 
artefact, (4) demonstrating the solution’s use in a relevant context, (5) evaluating its 
performance against the goals, and (6) communicating the results to relevant audiences. 
These steps are illustrated in Figure 4.1. 

The methodology begins by establishing the need to automate sketching tasks using a 
robotic manipulator, particularly addressing challenges in accuracy, visual detection, and 
force-controlled drawing. From there, the solution objectives were determined based on 
required functionalities, namely, camera integration, kinematic control, and smooth 
trajectory execution. The artefact developed includes Simulink models for kinematics, 
trajectory generation, and feedback systems, supported by MATLAB scripts for vision 
processing. Once developed, these modules were demonstrated through simulations and 
physical experiments using the QArm. The performance was evaluated based on criteria 
such as drawing precision, repeatability, and trajectory fidelity. Finally, the results and 
findings are being compiled into scholarly documentation for dissemination. 
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Figure 4.1: The DSRM Process Framework [60] 

5. Design and Development 
This section outlines the complete system setup, both in hardware and software, as well as 
the methodology applied in converting visual data into physical motion through the QArm 
manipulator. While the system successfully demonstrated trajectory execution and real-
time control, challenges were encountered in achieving the desired sketching fidelity. 

5.1 Hardware Setup and System Overview 
The experimental platform was configured in the Robotics Laboratory located in the 
Engineering and Science Building at San Francisco 
State University. The QArm robotic manipulator was 
firmly mounted on a lab bench opposite a fixed 
whiteboard using mechanical clamps to ensure a 
stable reference frame for drawing. The robot was 
powered using a standard power adapter, and 
communication was established via USB interfaces 
connected to a computer equipped with an NVIDIA 
graphics card, allowing reliable data acquisition and 
rendering from the Intel RealSense D415 camera. The 
camera was mounted in a fixed position such that it 
could acquire high-resolution RGB-D frames of the 
target subject, which were used in downstream image 

Figure 5.1.1: Real-world hardware setup showing 
the QArm robot 
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processing tasks. Figure 5.1.1 illustrates Real-world hardware setup showing the QArm 
robot. 

Once the hardware was physically arranged, the system followed a streamlined software 
integration flow, shown in Figure 5.1.2 The image processing script, written in Python and 
executed in Jupyter Notebook, was initiated to capture images and extract facial contours. 
The processed trajectory points were then exported and transferred into the MATLAB 
workspace for conversion into a robot-executable trajectory. MATLAB's custom script was 
used to perform trajectory simplification, down sampling, and formatting. These points were 
passed into a real-time Simulink model built with QUARC support to drive the QArm 
manipulator. The entire system operated as an integrated vision-to-execution pipeline 
across Python, MATLAB, and Simulink environments. 

 

Figure 5.1.2: Robotic vision system workflow including hardware setup, image processing, and trajectory execution. 

5.2 Image Acquisition and Processing 
To initiate the robotic sketching workflow, a Python-based vision module was developed to 
capture facial features and convert them into edge-based trajectories. A frontal face is first 
detected using the Haar Cascade classifier provided by OpenCV’s pre-trained models [61]. 
After initializing the webcam stream, the system captures a high-resolution frame and 
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converts it into grayscale for improved detection accuracy. Once a face is identified, an 
elliptical mask is applied over the detected region with additional padding to include 
peripheral contours. The masked area undergoes Gaussian blur to soften transitions and 
suppress background noise. This isolated region is then processed through a contrast 
enhancement pipeline using CLAHE (Contrast Limited Adaptive Histogram Equalization) 
and bilateral filtering, both of which are crucial in preserving facial features while reducing 
fine textures such as hair or skin blemishes. 

 

Figure 5.2: Captured Face and Sketch Style Edges 

To convert the pre-processed image into a sketch-style contour map, a double-pass Canny 
edge detection method is applied with two threshold pairs. This technique strengthens the 
line representation by combining outputs from low- and high-threshold filters. Post-
processing steps include morphological opening and dilation to remove noise and connect 
broken edges. The output is then binarized and resized to a standardized canvas (512×512 
px) suitable for robotic interpretation. This approach is well aligned with established 
computer vision techniques for edge-preserving contour extraction, such as those 
discussed in [62].  

The result is a clean and robot-friendly line drawing, which serves as input to the trajectory 
generation stage. Figure 5.2 displays both the captured face and its corresponding stylized 
edge output. The complete script used to implement this process is available in Appendix A. 

5.3 Trajectory Planning in MATLAB 
Trajectory generation for robotic execution was performed through a customized MATLAB 
script designed to convert the processed image sketch into a time-stamped 3D path suitable 
for the QArm manipulator. The source image, produced by the Python edge detection script, 
was saved directly into the working directory to ensure seamless access during the MATLAB 
session. This workflow allows synchronized processing, ensuring that the face sketch 



18 
 

extracted via Python is immediately available in the MATLAB environment for path 
translation. The trajectory planner script, provided in full in Appendix B, first reads the saved 
sketch_face_output.png and binarizes the image. Using the bwboundaries function, the 
sketch is segmented into discrete contour strokes. These contours are rescaled to fit the 
robot’s physical workspace (approximately 0.28 m height and variable Y span) and mapped 
into the Y-Z plane, while the X-axis remains fixed with minor adaptive shifts for proper 
contact control. A 3D scatter plot (Fig. 5.3.1) illustrates the face drawing trajectory on the Y 
and Z pane, but there is too many unwanted lines comes with the bwboundaries function.  

 

Figure 2.3: Raw trajectory generation without compensation: The left panel displays the original binarized sketch extracted 
from the processed image, while the right panel visualizes the unadjusted 3D trajectory path as executed by the QArm. 

Noticeable path distortion is present, particularly around curved features, due to the absence of adaptive Y-Z correction. 

To handle drawing pressure variances across the surface, Z-based compensation adjusts 
the X-depth based on vertical position, while lateral compensation corrects to asymmetric 
friction near the edges. For smooth multi-stroke drawing, each new contour stroke is 
prefaced with a pen-up transition sequence, consisting of lifting the pen back along the X-
axis, translating to the next stroke start point, and returning forward to contact. These 
transitional trajectories are interpolated to avoid overshooting or board collisions. The 
resulting path is organized into the q_trajectory structure, with a consistent time vector 
and a three-dimensional signal matrix specifying X, Y, and Z coordinates. This structured 
format is compatible with Simulink and QUARC real-time execution. A 3D scatter plot (Fig. 
5.3.2) illustrates the entire drawing trajectory, with a color gradient along the X-axis to 
indicate real-time depth modulation. Such visualization aids in verifying that contact depth 
adjustments are properly distributed across the sketch and highlights how trajectory fidelity 
is preserved even in regions requiring pressure compensation. The chosen MATLAB path 
generation strategy was inspired by robust robotic drawing literature such as that by X. Dong 
et al., which emphasizes image-to-path fidelity and adaptive control during stylized portrait 
replication [52]. 
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Figure 5.3.2: Trajectory generation from sketch image: The left panel shows the binarized edge sketch extracted using 
Python; the right panel presents the 3D trajectory with X-axis depth modulation encoded by color, illustrating adaptive 

path compensation across the Y-Z drawing surface. 

6. Control System Architecture and Implementation 
6.1 Overview 
The development of an autonomous robotic drawing system necessitates a sophisticated 
control architecture capable of precise trajectory tracking, real-time kinematic 
computations, and seamless hardware integration. This section presents the 
comprehensive design and implementation of a Simulink-based control framework 
developed for the Quanser QArm manipulator, specifically engineered for artistic rendering 
applications. The proposed architecture integrates forward and inverse kinematic solvers, 
real-time trajectory processing, and closed-loop feedback mechanisms to achieve high-
fidelity reproduction of facial contours extracted from digital imagery. 

The control system architecture addresses several critical challenges inherent in robotic 
drawing applications: maintaining trajectory accuracy across varying drawing speeds, 
ensuring joint limit compliance during complex motions, minimizing end-effector 
positioning errors, and providing robust fault detection mechanisms. The implementation 
leverages MATLAB/Simulink's real-time capabilities in conjunction with Quanser's QUARC 
(Quanser Real-time Control) framework to establish deterministic control execution with 
microsecond-level timing precision. 

6.2 Kinematic Foundation and Mathematical Formulation 
To support precise trajectory execution, the QArm control system relies on accurate forward 
and inverse kinematic models. This section describes the complete mathematical 
formulation and implementation strategy used for mapping between joint space and 
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Cartesian space. The modified geometric parameters and coordinate transformation 
models are tailored to the QArm’s 4-DOF architecture and are consistent with the physical 
configuration illustrated in Figure 6.2. 

 

Figure 6.2: Frame diagram for the Quanser Arm manipulator 

The Quanser QArm's kinematic structure is characterized by four degrees of freedom with 
the following Denavit-Hartenberg parameters: link lengths 𝐿1 =  0.14 𝑚, 𝐿2 = 0.35 𝑚, 𝐿3 =

 0.05 𝑚, 𝐿4 =  0.25 𝑚, 𝑎𝑛𝑑 𝐿5 =  0.15 𝑚. Let 𝜙1, 𝜙2, 𝜙3, 𝜙4  denote the joint angles of the 
QArm after applying offset mappings from the original angular variables 𝜃1, 𝜃2, 𝜃3, 𝜃4. 
Similarly, let the link parameters 𝜆1, 𝜆2, 𝜆3  and geometric offset 𝛽 be defined as Table 6.2: 

 

Table 6.2: Linear mapping to simplify the mathematical formulations 

These transformations simplify the forward and inverse kinematics while preserving physical 
accuracy. 

6.2.1 Forward Kinematics Implementation 
The forward kinematics determines the position and orientation of the QArm’s end-effector 
in Cartesian space based on its current joint angles. The transformation is defined using 
homogeneous matrices 𝑇𝑖

𝑖+1, with respect to the frame configuration in Figure 6.2. The 
overall transformation from base to end-effector is given by: 

𝑇0
4 = 𝑇0

1 ∗ 𝑇1
2 ∗ 𝑇2

3 ∗ 𝑇3
4 
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Each matrix 𝑇𝑖
𝑖+1 contains both rotation and translation components based on Denavit-

Hartenberg parameters. For example, the transformation from frame 0 to 1 is represented 
as: 

 

Subsequent matrices 𝑇1
2, 𝑇2

3, 𝑇3
4 follow similar construction and depend on the respective 

joint angles 𝜙2, 𝜙3, 𝜙4. The resulting end-effector position vector 𝑝4 and orientation matrix 
𝑅0

4 are extracted from the final transformation 𝑇0
4. The system supports real-time 

computation of these matrices at 500 Hz using the fixed step 𝑜𝑑𝑒4 solver, ensuring stable 
integration within the control loop. 

6.2.2 Inverse Kinematics Solver Architecture 
The inverse kinematic model calculates the required joint angles to position the end-effector 
at a desired point in Cartesian space. This computation is non-trivial due to the nonlinear 
nature of the manipulator geometry and the presence of multiple valid solutions. The 
adopted approach uses an analytical method adapted from Spong and Vidyasagar, 
accounting for the QArm’s geometry. 

Given a desired position 𝑝𝑑=[𝑥, 𝑦, 𝑧]𝑇, the angle 𝜙1 is computed directly as: 

𝜙1 = tan−1
𝑦

𝑥
 

To find 𝜙2  and 𝜙3, the planar projection of the arm is considered. The wrist joint angle 𝜙4 is 
often chosen based on end-effector orientation requirements or predefined as a static angle 
for 2D drawing applications. Multiple valid inverse solutions exist (elbow-up vs. elbow-
down), and the solver selects the optimal one by minimizing joint displacement from the 
previous configuration while respecting the following constraints: 

𝜙1 ∈ [−170∘, 170∘],   𝜙2 ∈ [−80∘, 80∘],   𝜙3 ∈ [−95∘, 75∘],   𝜙4 ∈ [−160∘, 160∘] 

Invalid or unreachable targets trigger fallback behavior in the control loop, such as skipping 
waypoints or interpolating intermediate poses. The implementation ensures continuity in 
the solution space and avoids singularities near workspace boundaries. 

6.3 Closed-Loop Control Architecture Design (Block-Level Explanation) 
The control system for this project is designed as a closed-loop position control pipeline that 
enables the Quanser QArm to accurately follow pre-computed trajectories extracted from a 
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processed image. This implementation is visualized in Figure 6.3, which shows both a 
conceptual block diagram of signal flow and the corresponding Simulink implementation 
used for real-time hardware execution. Each stage in this pipeline transforms trajectory data 
into smooth motor commands while ensuring safe and stable motion of the robot in a 
closed-loop control environment. 

6.3.1 Playback Position Trajectory  
The first component of the pipeline is the Playback block, which takes the pre-generated 
trajectory data stored as a MATLAB structure and streams it point-by-point to the 
downstream controller. This component is triggered by a logical clock pulse signal that 
ensures the motion only begins after system initialization. It feeds the desired 3D Cartesian 
coordinate positions, denoted as 𝑥(𝑡), at every simulation time step. This block ensures 
deterministic reference delivery for precise reproduction of multi-stroke facial sketches in 
space and time. 

6.3.2 Inverse Kinematics Controller 
The inverse kinematics block processes the desired Cartesian coordinates 𝑥(𝑡) = [𝑥, 𝑦, 𝑧] 
and translates them into joint-space commands 𝜃𝑑(𝑡) = [𝜙1, 𝜙2, 𝜙3, 𝜙4]. This module 
internally solves the geometric equations for the QArm structure using an analytical 
approach based on its link configuration. To minimize trajectory discontinuities and avoid 
configuration flipping, the controller utilizes historical joint positions as input (via the 
𝑝ℎ𝑖_𝑝𝑟𝑒𝑣 input) and selects the optimal configuration based on proximity minimization. This 
decision ensures smooth angular motion and helps prevent discontinuities in the sketch 
output. 

6.3.3 Signal Filter: Second-Order Low-Pass Dynamics 
The generated joint angle commands are passed through a second-order low-pass filter that 
acts as a command conditioner. This block suppresses high-frequency fluctuations, 

Figure 6.3: Closed-Loop Control Flow Diagram with Signal and Kinematic Stages 
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reduces the risk of hardware jerks, and filters sharp transitions resulting from digital 
sampling. The filter configuration follows a critical damping setup using parameters 𝜔𝑛=10 
𝑟𝑎𝑑/𝑠 and 𝜁 = 1.0, ensuring a smooth yet responsive transition to the commanded angles 
𝑢(𝑡). This filtered signal prevents overshoot and mechanical wear in the copper-core QArm 
motors. 

6.3.4 Hardware Plant and Execution (QArm Motors) 
The filtered joint commands are then passed to the QArm hardware block via the QUARC 
hardware-in-the-loop interface. This block represents the physical robot with copper-wound 
actuators and includes integrated encoder feedback. The hardware executes the 
commands in real time, driving the motors toward the desired joint angles 𝜃(𝑡) while the 
system records both commanded and actual joint responses for monitoring. Safety 
mechanisms, such as joint limit constraints and gripper on/off toggles, are also handled 
within this block. 

6.3.5 Forward Kinematics for Position Feedback 
The joint encoder feedback 𝜃𝑚(𝑡) is passed through a forward kinematics block to estimate 
the actual Cartesian position of the end effector, denoted 𝑥𝑚(𝑡). This computed feedback is 
essential for closed-loop monitoring. The Simulink implementation uses the Quanser 
qamForwardKinematics block that mirrors the robot’s physical geometry using Denavit–
Hartenberg parameters. It provides the real-time output needed for comparing actual 
position against desired trajectory for error analysis and plotting. 

6.3.6 Position Tracking and Output Logging 
The final stage of the control chain is the Position Tracking block, which compares the 
measured position 𝑥𝑚(𝑡).  to the reference 𝑥(𝑡). It also records the entire trajectory path for 
post-experiment analysis. The trajectory output is used for visual validation and trajectory 
accuracy estimation, enabling qualitative and quantitative performance analysis. Figure 

Figure 6.3.6: Simulink Model - QArm Closed-Loop Drawing Control using QUARC Interface 
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6.3.6 illustrates the exact Simulink block representation that mirrors the theoretical control 
flow. 

This architecture ensures robust real-time execution, smooth motion commands, and high-
fidelity reproduction of facial sketch trajectories. 

6.4 Hardware Plant Subsystem: Low-Level Execution and Safety Monitoring 
The hardware plant subsystem, as illustrated in Figure 6.4, encapsulates the real-time motor 
execution and safety monitoring functionalities necessary for controlling the QArm 
actuators and end-effector. Implemented within the Simulink environment, this module 
facilitates Hardware-in-the-Loop (HIL) integration with the physical robotic system via the 
QUARC real-time interface. The primary objective of this subsystem is to ensure accurate 
position command execution while preserving the mechanical integrity of the robot through 
constraint enforcement and current monitoring. 

 

Figure 6.4: Hardware Plant Subsystem Block Diagram 

Incoming joint commands 𝜙𝑐𝑚𝑑  are first passed through saturation blocks configured with 
predefined angular boundaries (e.g., ±π/12 radians) to limit the command range in 
accordance with the physical joint constraints. This mechanism prevents unsafe or 
unrealistic actuation inputs that may result in joint collision or hardware overextension. A 
dedicated gripper control module processes boolean on/off inputs in conjunction with 
measured gripper current values to regulate the marker-holding mechanism. This module 
not only translates the control command into an actuator signal but also evaluates the 
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current feedback to detect any resistive force indicating potential contact with the drawing 
surface or object collision. 

To mitigate noise and smooth sensor data, a moving average filter is employed on the 
measured joint positions. This filtered output enhances control stability and accuracy by 
reducing transient fluctuations. The filtered measurements are then routed into a vector 
norm comparator that continuously evaluates the Euclidean distance between the desired 
and actual joint positions. When this error norm falls below a threshold of 0.017 radians 
(approximately 1°), the system registers the current drawing segment as completed. This 
validation is reinforced by a timer-based gating mechanism to ensure that the position has 
stabilized for a sufficient duration. 

The subsystem also incorporates a real-time feedback mechanism for visual task status. A 
signal is transmitted to the base RGB LED of the QArm, changing its illumination state to 
indicate task progress or completion. Additionally, an HIL Set Property block is utilized to 
dynamically assign low-level hardware parameters such as current limits and internal 
control gains. This structured design enables the robot to perform with high reliability and 
resilience, particularly during extended operation sequences involving delicate sketching 
motions. 

7. Demonstration and Evaluation 
Concerning the previous points and the work that has been done on this project, it is 
necessary to study its development to come to some conclusions. For that reason, an 
evaluation must be made such as proof of how good the implementation has been. To do 
this evaluation, the idea is to see if the objectives of this project have been achieved, the 
quality of the results and analyze the errors and how they affect. 

7.1 Simulation Trajectory Plots 
To validate the full pipeline before deployment, a simulated trajectory generation was 
performed using a real facial image. This stage ensures the integrity of the data transfer 
between Python and MATLAB, the fidelity of the contour extraction, and the feasibility of the 
robot's motion range with the generated paths. 

Figure 7.1 presents a sequential visualization of the image-to-trajectory workflow. The first 
image shows the captured face, which is processed by the Python script to isolate the facial 
region using elliptical masking. The second image displays the stylized edge extraction result 
after applying gamma correction, CLAHE enhancement, bilateral filtering, and double-pass 
Canny detection. 
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This edge sketch is then passed into MATLAB for path planning using a custom script, where 
each pixel contour is converted into a 3D trajectory while incorporating adaptive 
compensation along the Y and Z axes. Figure 7.1c depicts a simplified trajectory visualization 
from a 2D lifted viewpoint, while Figure 7.1d includes color-coded 3D trajectory mapping 
based on X-offset values. This allows for clear interpretation of movement smoothness, path 
distribution, and pen-lift transitions prior to hardware execution. 

 

Figure 7.1: (a) Captured face input, (b) stylized sketch output from Python processing, (c) simplified 2D trajectory lifting for 
shape verification, (d) 3D trajectory map with X-based compensation color coding. 

The figure validates that the system correctly interprets human facial geometry into robotic 
motion paths, making it an essential stage for safety, alignment verification, and debugging 
before proceeding to real-time control. 

7.2 Real-World Drawing Snapshots 
The real-world evaluation of the QArm drawing system was conducted to validate the 
simulation-based trajectory in a physical setting using the robot’s end-effector to draw on a 
whiteboard surface. The experiments involved executing the planned facial contour 
trajectories, which were originally generated from the image processing pipeline and verified 
in simulation. The robot was programmed to follow the full 
set of 3D waypoints, including return-to-home movements 
and trajectory lifts between strokes to avoid marker 
dragging. Figure 7.2.1, snapshots QArm robot drawing in 
real time during physical experiment. 

As shown in Figure 7.2.2, multiple snapshots were captured 
during different stages of the physical drawing process. The 
images display the robot arm actively sketching and the 
resulting outputs on the board. These physical results 
illustrate that the robot maintained continuous contact 
across most strokes, successfully reproducing 

Figure 7.2.1: QArm robot drawing in real 
time during physical experiment 
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distinguishable facial outlines. The compensation logic played a critical role in adjusting the 
X-axis pressure based on Z-depth and lateral Y positioning, ensuring consistent marker 
contact and avoiding missing regions. 

 

Figure 7.2.2: (a) Initial drawing result using early-stage compensation. (b) Mid-phase execution showing improved facial 
contours. (c) Final refined sketch from compensated trajectory. 

8. Result, Discussion and Limitations 

The proposed robotic sketching system successfully integrates trajectory planning, inverse 
kinematics control, and real-time low-level execution to reproduce facial sketches on a 
whiteboard surface. As demonstrated in the real-world experiments, the QArm manipulator 
was able to autonomously capture a face image, extract sketch-style contours, generate an 
adaptive trajectory, and execute the drawing task on a vertical plane. However, the final 
drawing accuracy remained limited by mechanical, environmental, and segmentation 
constraints, which were more pronounced in practical execution than in simulation. 

To quantify the fidelity of the trajectory tracking subsystem, Figure 8.1 presents the evolution 
of the end-effector position along the X, Y, and Z axes during a representative drawing 
segment. The plot compares the desired trajectory r(t), the filtered commanded path u(t), 
and the actual measured position y(t) obtained via forward kinematics. The close alignment 
between the commanded and measured curves confirms that the second-order low-pass 
filtered control signals were effectively tracked by the QArm hardware plant. Minor 
deviations observed in the Y-axis around t = -18 seconds are attributed to surface 
compliance and micro-stalling of the pen tip under higher friction. Across all three axes, the 
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RMS tracking error remained below 2.5 mm, demonstrating the accuracy and robustness of 
the implemented control architecture under real-world conditions. 

The core control pipeline, which incorporates a closed-loop position tracking loop, 
performed reliably under real-time hardware constraints. The inverse kinematics solution 

maintained stable operation across the full trajectory, with the joint angle updates filtered 
through a second-order low-pass system tuned to prevent jerky motions. The execution 
frequency of 500 Hz ensured tight synchronization between playback reference and physical 
actuation. As reflected in the trajectory plot of Figure 8.1, the commanded and measured 
positions in X, Y, and Z axes followed the desired path with millimeter-level fidelity for most 
drawing sections, validating the correctness of the control design and implementation. 

Nevertheless, despite this control precision, the actual sketch output deviated significantly 
from the ideal visual outcome. One major source of distortion arose from the absence of 
semantic segmentation in the trajectory data. The edge extraction algorithm treated the 
sketch as a single connected mask, rather than identifying discrete facial components such 
as the mouth, nose, eyes, and jawline as separate strokes. As a result, the robot lacked 
directional control or intentional order in the stroke sequencing. This led to an unnatural path 
traversal pattern, often causing redundant marker lifts, overlapping strokes, and ambiguous 
connections between features. For example, the jawline could be drawn last instead of 
framing the face, while lips and eyes could be connected inappropriately due to incorrect 
stroke grouping. 

Figure 8.1: Desired vs Commanded vs Measured Trajectory in X, Y, and Z axes for a drawing path segment. The solid lines 
represent the desired reference trajectory, the dashed lines indicate the commanded control signals, and the dotted lines 
show the actual measured position feedback from the QArm encoders. 
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Another critical mechanical factor influencing drawing quality was the orientation of the 
end-effector during contact. While the drawing trajectories were projected assuming planar 
contact perpendicular to the board, the QArm's physical geometry and limited wrist 
flexibility resulted in an angular approach during most of the sketch. The marker tip often 
contacted the board with a tilt, rather than perpendicularly, introducing asymmetric friction 
and inconsistent stroke width. This tilt-induced error also caused some strokes to partially 
skip the surface, especially on the right or lower sections of the sketch, where joint angles 
pushed the end-effector further from its ideal normal orientation. 

Material constraints of the QArm hardware further compounded the drawing issues. The 
plastic-based structure exhibited moderate flex during fast transitions, and the integrated 
gripper lacked compliant motion or force sensing. Since the marker was rigidly mounted and 
clamped at a fixed offset, there was no ability to self-adjust for surface curvature, pen length 
variability, or dynamic damping. This inflexibility contributed to either excessive pressure, 
flattening the marker and widening strokes—or insufficient contact, leading to floating lines. 
In particular, the thin vertical jaw gripper design was not optimized for precision tip control 
or dynamic wrist reorientation, making fine artistic control impractical without additional 
hardware. 

Despite these physical limitations, the system demonstrated reliable and repeatable 
trajectory execution and successful image-to-motion translation in multiple trials. The 
integrated control framework performed consistently across different faces and lighting 
conditions. Visual analysis of the board output revealed a recognizable human likeness in 
most cases, though often lacking in proportional detail and stroke consistency. The robot 
showed robustness in point-by-point sketching, with reliable marker lift and placement logic 
to avoid unintended line connections. However, the drawing quality remained well below 
that of trained human sketching, emphasizing the need for future integration of intelligent 
path reordering, per-stroke feature segmentation, and adaptive end-effector compliance. 

In conclusion, while the QArm robot's control architecture performed with high reliability 
and precision, the final sketch results were constrained by mechanical, geometric, and 
perceptual limitations. The experiment highlights the clear distinction between good control 
execution and good artistic rendering—an area where trajectory structure, segmentation 
strategy, and physical contact mechanics must be jointly optimized. Nevertheless, the 
system demonstrates a strong proof-of-concept platform for vision-to-motion 
transformation and robotic drawing research in educational and prototyping environments. 
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9. Conclusion 
This project presented a complete pipeline for robotic sketch replication using the Quanser 
QArm platform. The system integrated real-time facial image acquisition, adaptive sketch 
edge processing, and smooth trajectory generation using MATLAB and Python. These 
trajectories were executed through a closed-loop Simulink control framework, which 
included inverse kinematics, signal filtering, and joint space feedback via QUARC. The 
control system demonstrated stable performance and reliable execution of complex 
drawing paths, with RMS position tracking error remaining under 2.5 mm. Visual results 
showed clear alignment between the input sketch and the robot's path-following behavior 
on a vertical whiteboard surface. 

However, the physical limitations of the QArm hardware affected overall sketch fidelity. The 
gripper lacked compliance with consistent contact pressure and was not perpendicular to 
the board, causing visible distortion in certain areas such as lips and eyes. Additionally, due 
to limited segmentation of facial features, continuous strokes across disconnected regions 
introduced unwanted lines, suggesting the need for finer stroke classification and 
directional planning. Despite these issues, the project successfully validated the feasibility 
of vision-guided robotic sketching and established a foundation for future improvements in 
force-controlled drawing and orientation-aware end-effector path planning. 

10. Future Opening  
Future extensions of this work will focus on improving sketch accuracy and robustness 
through enhanced segmentation and direction-aware trajectory generation. By individually 
isolating facial components such as eyes, nose, lips, and jawlines, the trajectory planner can 
generate discrete, logically ordered strokes with controlled marker engagement and lift 
timing. This approach would eliminate undesired overlapping or disconnected lines, 
resulting in clearer and more human-like sketches. Additionally, stroke planning based on 
local curvature and feature relevance could further improve the legibility and aesthetic 
quality of the robotic drawings. 

From a hardware perspective, future improvements should include redesigning the end-
effector to maintain perpendicular alignment with the drawing surface. The current QArm 
configuration lacks wrist actuation or compliance, which limits the range of drawing poses 
and results in uneven contact. Integrating a tilt-correcting passive joint or actively controlled 
wrist module could allow the marker to dynamically adjust its orientation for consistent 
surface contact. Furthermore, incorporating real-time force sensing and compliance control 
would enable the system to detect excessive pressure or floating conditions, allowing 
adaptive correction during drawing operations. These upgrades would significantly enhance 
both drawing fidelity and long-term reliability of the robotic system. 
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12. Appendix  
12.1 Appendix A – Python Script 
import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

 

def capture_face(): 

    """Capture and mask only the face using ellipse""" 

    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 
'haarcascade_frontalface_default.xml') 

     

    cap = cv2.VideoCapture(0) 

    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) 

    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) 

     

    for _ in range(10): 

        ret, frame = cap.read() 

        if not ret: 

            cap.release() 

            raise Exception("  Camera initialization failed") 

 

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
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    gray = cv2.equalizeHist(gray) 

    faces = face_cascade.detectMultiScale(gray, 1.1, 4, minSize=(100, 100)) 

 

    if len(faces) == 0: 

        cap.release() 

        raise Exception("  Face detection failed - ensure good lighting and front-facing 
position") 

 

    (x, y, w, h) = max(faces, key=lambda f: f[2]*f[3]) 

    margin = int(min(w, h) * 0.2) 

    x, y, w, h = x-margin, y-margin, w+2*margin, h+2*margin 

 

    mask = np.zeros_like(gray) 

    cv2.ellipse(mask, (x+w//2, y+h//2), (w//2, h//2), 0, 0, 360, 255, -1) 

    mask = cv2.GaussianBlur(mask, (99, 99), 0) 

    mask = mask / 255.0 

 

    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

    face_only = (frame_rgb * np.stack([mask]*3, axis=-1)).astype(np.uint8) 

 

    cap.release() 

    return face_only, (x, y, w, h) 

 

def final_line_drawing_sketch(face_img, face_rect): 

    """Clean, stylized facial sketch suitable for robotic path planning""" 

    x, y, w, h = face_rect 
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    padding = int(max(w, h) * 0.22) 

 

    # Crop face region 

    face_roi = face_img[ 

        max(0, y - padding):min(y + h + padding, face_img.shape[0]), 

        max(0, x - padding):min(x + w + padding, face_img.shape[1]) 

    ] 

 

    gray = cv2.cvtColor(face_roi, cv2.COLOR_RGB2GRAY) 

 

    # Step 1a: Gamma correction (brighten face) 

    gamma = 1.5  # You can try 1.2 to 1.8 

    inv_gamma = 1.0 / gamma 

    table = np.array([(i / 255.0) ** inv_gamma * 255 for i in np.arange(256)]).astype("uint8") 

    gray = cv2.LUT(gray, table) 

 

    #     Step 1: Enhance contrast & suppress beard/texture 

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) 

    enhanced = clahe.apply(gray) 

    smooth = cv2.bilateralFilter(enhanced, d=9, sigmaColor=75, sigmaSpace=75) 

    blur = cv2.GaussianBlur(smooth, (3,3), 0.7) 

 

    #     Step 2: Double-pass Canny edge detection 

    edges1 = cv2.Canny(blur, 30, 70) 

    edges2 = cv2.Canny(blur, 50, 120) 

    edges = cv2.bitwise_or(edges1, edges2) 
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    #     Step 3: Post-process lines for cleanness 

    kernel = np.ones((2,2), np.uint8) 

    edges = cv2.morphologyEx(edges, cv2.MORPH_OPEN, kernel) 

    edges = cv2.dilate(edges, kernel, iterations=1) 

 

    #     Step 4: Convert to sketch-style black lines on white 

    sketch = 255 - edges 

    sketch = cv2.medianBlur(sketch, 3) 

    _, sketch = cv2.threshold(sketch, 220, 255, cv2.THRESH_BINARY) 

 

    #     Step 5: Resize with padding if needed 

    sketch = cv2.resize(sketch, (512, 512), interpolation=cv2.INTER_AREA) 

 

    return sketch 

 

 

# Main 

try: 

    print("         Capturing face (ensure good lighting)...") 

    face_img, face_rect = capture_face() 

 

    print("       Generating refined sketch-style edges...") 

    edges = sketch_face(face_img, face_rect) 
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    cv2.imwrite("sketch_face_output.png", edges) 

 

    plt.figure(figsize=(14, 7)) 

    plt.subplot(1, 2, 1) 

    plt.imshow(face_img) 

    plt.title("Captured Face", pad=10) 

    plt.axis('off') 

 

    plt.subplot(1, 2, 2) 

    plt.imshow(edges, cmap='gray') 

    plt.title("Sketch Style Edges", pad=10) 

    plt.axis('off') 

 

    plt.tight_layout() 

    plt.show() 

 

    print("   Success! Sketch saved as 'sketch_face_output.png'") 

 

except Exception as e: 

    print(f"  Error: {str(e)}") 

 

12.2 Appendix B – MATLAB Script 
function q_trajectory = qarm_trajectory_clean(image_path) 
    % Default image if not provided 
    if nargin < 1 
        image_path = 'sketch_face_output.png'; 
    end 
 
    % Load and convert to grayscale 
    sketch = imread(image_path); 
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    if size(sketch, 3) == 3 
        sketch = rgb2gray(sketch); 
    end 
 
    % Binarize and invert 
    binary = imbinarize(sketch); 
    binary = ~binary; 
 
    % Find contours 
    contours = bwboundaries(binary, 'noholes'); 
    valid = cellfun(@(c) size(c,1) > 3, contours); 
    contours = contours(valid); 
 
    % Image size 
    img_h = size(binary, 1); 
    img_w = size(binary, 2); 
 
    % Drawing and lifting positions 
    X_draw = 0.525;         % Marker touches board here 
    X_lift = 0.49;         % Pull back to lift marker safely 
 
    % Drawing dimensions (face layout in Y-Z) 
    Z_center = 0.462; 
    Z_span = 0.28; 
    Z_min = Z_center - Z_span/2; 
 
    aspect = img_w / img_h; 
    Y_span = aspect * Z_span; 
    Y_min = -Y_span/2; 
 
     % Drawing parameters 
    pen_down_offset = 0.005;  % Extra push when drawing 
    pen_up_clearance = 0.015; % Clearance when lifted 
 
    % Trajectory building with pen-up handling 
    trajectory = []; 
    pause_frames = 15; 
 
    y_prev = 0; z_prev = Z_center;  % initialize 
    for i = 1:length(contours) 
        c = contours{i}; 
        if size(c,1) >= 3  && size(c,1) <= 12 
           c = smoothdata(c, 1, 'movmean', 3);  % Smooth contour path 
        end 
     
        y_norm = c(:,2) / img_w; 
        y_norm = 1 - y_norm; 
        z_norm = (img_h - c(:,1)) / img_h; 
 
        y = y_norm * Y_span + Y_min; 
        z = z_norm * Z_span + Z_min - 0.012; 
        z(z < 0.40) = z(z < 0.40) - 0.003;  % Gently push down the bottom zone 
 
        x = X_draw * ones(size(y));  % All points on drawing surface 
       % Adaptive X push based on Z rang 
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        % Smooth Z-based compensation using linear interpolation 
        z_compensation = zeros(size(z)); 
        z_range = z;  % use the current Z values directly 
         
        z_compensation(z_range < 0.39) = 0.009;             % Very bottom 
        z_compensation((z_range >= 0.39) & (z_range < 0.41)) = 0.008;   % Lower mid 
        z_compensation((z_range >= 0.41) & (z_range < 0.43)) = 0.0075;  % Mid 
        z_compensation((z_range >= 0.43) & (z_range < 0.465)) = 0.004;  % Upper mid 
        z_compensation(z_range >= 0.465) = 0.0015;                      % Topmost 
 
 
        % 
        y_compensation = zeros(size(y)); 
        left_y_mask  = y < -0.039;   % Robot right side (image left) 
        right_y_mask = y > 0.031;  % Robot left side (image right) 
        y_compensation(left_y_mask)  = +0.0020;  % Too much contact 
        y_compensation(right_y_mask) = -0.0018;  % Less contact 
         
        % Apply combined X shift 
        x = x + z_compensation + y_compensation; 
       
        stroke = [x, y, z]; 
        if ~isempty(trajectory) 
            % Insert pen-up: pull back in X only 
            lift_away = [linspace(X_draw, X_lift, pause_frames)', ... 
                         repmat(y_prev, pause_frames, 1), ... 
                         repmat(z_prev, pause_frames, 1)]; 
 
            move_to = [repmat(X_lift, pause_frames, 1), ... 
                       linspace(y_prev, y(1), pause_frames)', ... 
                       linspace(z_prev, z(1), pause_frames)']; 
 
            return_forward = [linspace(X_lift, X_draw, pause_frames)', ... 
                              repmat(y(1), pause_frames, 1), ... 
                              repmat(z(1), pause_frames, 1)]; 
 
            trajectory = [trajectory; lift_away; move_to; return_forward]; 
        end 
 
        trajectory = [trajectory; stroke]; 
        y_prev = y(end);  % store end of current stroke for next transition 
        z_prev = z(end); 
 
    end 
 
    % Add home position at start and end 
    home = repmat([0.45, 0, 0.45], 10, 1); 
    home_end = repmat([0.44, 0, 0.45], 10, 1); 
    % 
    trajectory = [ home; trajectory; home_end]; 
 
    % Time vector 
    t = linspace(0, 0.015*(size(trajectory,1)-1), size(trajectory,1))'; 
 
    % Structure for Simulink 
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    q_trajectory = struct(); 
    q_trajectory.time = t; 
    q_trajectory.signals.values = trajectory; 
    q_trajectory.signals.dimensions = 3; 
 
    % Plot check 
    figure('Name', 'Board-Safe Face Sketch Trajectory'); 
    subplot(1,2,1); 
    imshow(sketch); title('Original Sketch'); 
 
    subplot(1,2,2); 
    scatter3(trajectory(:,1), trajectory(:,2), trajectory(:,3), 10, trajectory(:,1), 
'filled');  % color = X offset 
    hold on; 
    scatter3(trajectory(1,1), trajectory(1,2), trajectory(1,3), 50, 'g', 'filled');  
% Start point 
    scatter3(trajectory(end,1)+0.001, trajectory(end,2), trajectory(end,3), 50, 'r', 
'filled');  % End point 
    xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)'); 
    title('Trajectory with X-Forward Color Map'); 
    axis equal; grid on; view(3); 
    colorbar;  % Shows the X forward bias level 
end 
 

12.3 Appendix 3 – Simulink Model  

 

 

 
 


