SAN FRANCISCO

STATE UNIVERSITY

SCHOOL OF ENGINEERING, SFSU

ENGR 895 - RESEARCH PROJECT
PROJECT: "QARM-BASED ROBOTIC FACE DRAWING SYSTEM"
SUPERVISED BY: DR MOJATABA AZADI SOHI

BY:
DHOLAKIYA MILAN PRAVINBHAI

#923655574

Abstract:

This paper presents the design and implementation of a vision-guided robotic drawing
system using the Quanser QArm. The objective is to enable the robot to autonomously
replicate human facial sketches on a whiteboard by integrating image processing, path
planning, and real-time control. The system architecture combines Python-based image
acquisition and contour extraction via OpenCV with trajectory generation in MATLAB.

A closed-loop control framework is implemented in Simulink using the QUARC interface for
accurate motion execution. SolidWorks is used for designing custom end-effector mounts
and drawing tools. While the control performance and trajectory tracking are stable and
reliable, some limitations were observed in the precision of physical sketch output due to
mechanical constraints and end-effector orientation. This work demonstrates the feasibility
of merging computer vision with robotic motion control for artistic tasks, highlighting
potential improvements in trajectory decomposition, gripper design, and multi-axis
compensation.

Keywords: Path Planning, Robot Control, Quanser, Image Processing, Kinematics, Simulink,
Python, OpenCV.

Table of Contents

LR 18 o To L8 o 4o o PN 5
LI I == Tod <=1 (o 10] o Vo Pt 5
1.2 Problem Statement and ObjJeCiVESiuiin i e e 5
T.S OVEIVIBW ittt ettt ettt et et s et et s et e e s eaa e eanstaaeeaneennes 7

2. Theoretical Frame of REfErENCEecuuiiuiiiiiiiiiiiiii e 7
b O U F-] o= 1=] S PP 7
2.2 SOTIWAIE ettt ettt e et e et et st et et ea s e eaa e 8

2.2.1 MATLAB/Simulink and QUARCcouuiiiie et 8
2.2.20PENCV ettt ettt et et ettt et e et et e e e anaanaanne 9
2.3 Vision System and Camera INtegrationcouviiiiiiiii e e e e 9
2.4 IMaABE PrOCESSING ceueuiiiiieiiiiit e eie ettt ettt e tetnse et eueenetaetneansassnstneansensensansnnens 10
2.5CoNtrol Of the RODOT ..c.uieiiiiiiiiiee et 10
2.5.1 Type of Joints, Movement, and Interpolation.........ccevviiiiiiiiiiiiiniiiiiiin e, 10
2.5.2 Controllers and FEEdbacCKcccuuiiiiiiiiiiiiiiiiiii e 11
2.5.3TrajeCtOry PlanninNgcu ittt e ettt e ee et s e et eansaseneanaansenaansnnsnnens 12

3. LIterature REVIBWiuuiiiiiiiiiiici ettt et et e s e e e e e e eaas 12

20 7 1Y d gToTo [o] o=y Y APPSR PR PPP 14

5. Design and DevelopmEnT. ... i e et e e e e e e 15
5.1 Hardware Setup and SyStem OVEIVIEWuueuieiiiiieiieieieeeieeeenreeeeneeesneeesaeneeesneneenns 15
5.2 Image AcQUISItion and ProCESSING....ccuviuiiniiiieiiiieitieieeeeeeee et et eneeeeneeeeeeneennens 16
5.3 Trajectory Planning in MATLAB ...c.oniiii ettt e st e saetnensaansananen 17

6. Control System Architecture and Implementation......c..ceeiviiiiiiiiiiiiiiirirre e 19
6.1 OVEIVIEW ettt ettt ettt et et e e et s ea e e e e ea e eaa s eaaeeaaeaaeseansens 19
6.2 Kinematic Foundation and Mathematical Formulationc..cccoiiiiiiiiiiiniinnnnn.e. 19

6.2.1 Forward Kinematics Implementationccceeiiiiiii e eeeas 20
6.2.2 Inverse Kinematics Solver ArchiteCturecoeviuiiiiiiiiiiiiiiiiiiiinii e 21
6.3 Closed-Loop Control Architecture Design (Block-Level Explanation)c.......... 21
6.3.1 Playback PoSition Traj@CTOrY vt ee e aee e e e eaeaaas 22

6.3.2Inverse KinematiCS CoONtrOllBr . .. it eeeaeeneeenenes 22

6.3.3 Signal Filter: Second-Order Low-Pass DyNamicCsccoevveeiiiieeiniiiiiienieneneenennnn. 22
6.3.4 Hardware Plant and Execution (QArmM MoOtOrS) ..c.iuvieiiiiiiiiiiiiiiiieiieeeeeeeeceaenes 23
6.3.5 Forward Kinematics for Position FeedbackK.........c..cccoocviiiiiiiiiiiiiiiinininnn, 23
6.3.6 Position Tracking and Output LOGEING.....cuviniiniiiiiiiiiiei e e e e 23

6.4 Hardware Plant Subsystem: Low-Level Execution and Safety Monitoring................. 24
7. Demonstration and Evaluationccoouiviiiiiiiiiiiiiiiii 25
7.1 SimMulation TrajeCtory PLOTS ...cuuieiiieieeiei e e et e et e e e e e e e eaeaeas 25
7.2 Real-World Drawing SnapsShotS. ..o iiii ittt ee e s e e e eneaens 26

S I ©7o] o Lo (U E=] o] o H NPT 30
L ST] (=N O] =T a1 oF- SO P PP PPPPPPI 30
LR 2] (=T (=] 0 Lo = TP 31
L2 Y o o 11 o Lo | PRt 35
12.1 AppendixXx A — PYthON SCHIPT «oueeii ittt et e ee e e e e e eeennanns 35
12.2 ApPENAIX B = MATLAB SCIiPT.cuttiiiiiiiitiiiiiie et eee et eeee e e e e eaeeesneaerasneaeenens 39
12.3 Appendix 3 = SIMULINK MOAEL....cuuiuiiiiiii et eae e enes 42

1. Introduction

The report outlines the nature of the project and how it relates to industry, as well as
the problem that motivated the objective-setting to solve it. Moreover, this report also
discusses the delimitations that were found during the development process.

1.1 Background

In recent years, the deployment of robotic systems has expanded significantly across
various domains, ranging from industrial manufacturing to service-based applications and
even traditional manual fields. It is now increasingly common to observe robotic arms being
utilized in areas once considered unlikely for automation, such as culinary arts, domestic
environments, and creative practices like drawing and painting [1]. Forecasts indicate that
robotics will continue to permeate daily life, becoming a standard presence in routine tasks

[2].

This growing integration of robotics has facilitated nhew modes of operation, particularly in
contexts aligned with the industry 4.0 paradigm, where human-robot collaboration plays a
central role in enhancing productivity and worker safety [3]. Among the many types of robots
available, robotic arms have gained prominence due to their versatility, precision, and ability
to operate within shared environments. They can perform complex actions, such as
manipulating tools or replicating human-like motions which can assist humans in
completing intricate tasks and reducing physical strain [4].

While earlier research in robotics primarily addressed basic automation and motion control,
current developments focus on more advanced capabilities. These include learning,
decision-making, and problem-solving powered by artificial intelligence, enabling robotic
arms to engage in fields such as visual arts. As such technologies evolve, a compelling
question emerges: can a robotic arm be programmed to create artistic works, such as
sketches or portraits, with the sensitivity and fluidity typically attributed to human artists?

(5]

1.2 Problem Statement and Objectives

Despite significant advances in robotic automation and visual perception, enabling a robotic
system to accurately reproduce artistic sketches from visual inputs, particularly human
faces remain a multifaceted challenge. Robotic arms traditionally lack the fine-grained
compliance needed for consistent surface contact, often resulting in incomplete line
segments, excessive pressure, or deviation from intended contours [1], [5]. These limitations
are exacerbated when working on non-horizontal planes or transforming 2D pixel data into
real-time 3D motion trajectories, especially without tactile sensing or force feedback [3].

Furthermore, existing systems in artistic robotics often emphasize simulation-based
performance or fixed-environment setups, which do not fully reflect the complexities of real-
world operation, including joint inaccuracies, drawing board irregularities, and variable
marker wear [2]. The difficulty lies not only in generating path trajectories from images, but
also in ensuring that these paths are executed with sufficient mechanical precision and
compliance to yield consistent visual output [4].

The objective of this projectis to develop anintegrated robotic sketching system that bridges
the gap between image processing and physical actuation. Specifically, the system aims to:

Acquire facial images using a live webcam feed and extract clean contour lines via OpenCV-
based preprocessing. Transform 2D sketches into 3D paths that conform to the operational
limits of the Quanser QArm. Implement a custom-designed spring-loaded marker holder
that allows safe yet stable contact with the sketching surface, compensating for board
curvature and marker tip variability [4]. Introduce an adaptive X-axis offset correction
mechanism based on real-time Y and Z coordinates to minimize uneven pressure or dragging
across different facial regions. Execute and monitor the drawing using a closed-loop
Simulink + QUARC control environment, incorporating trajectory generation, inverse
kinematics, and forward kinematics modules. Evaluate results through both simulation
trajectory plots and real-world drawing comparisons, ensuring repeatability and control
accuracy.

Through this approach, the system demonstrates the potential of combining visual
intelligence, compliant hardware, and real-time control to enable robotic sketching in
unconstrained physical environments, a key capability for future robot-human creative
collaboration [1], [2], [5].

e (&
LA €A,
ogefO¥ o456,
& e RIS
oW Q@ 4’0):"6“
44_,4’
= SKETCHING (S
o ROBOT
Ro, 4"8
Mg 7 y e &
Sty O P M WO e
rC‘, Re, o) @(’)‘ \\\c’
Ry o® Oc’_p)“‘
Aoty
LAC AR
o «ev

Figure1.1: Objective of the Project

1.3 Overview

This report presents the development of a robotic sketching system using the Quanser
QArm, where image processing and robotic control techniques are combined to replicate
human facial sketches on a whiteboard. The work begins by outlining the theoretical
background, including robot kinematics, control methods, and the image processing
approach used to generate sketch-like paths. It then reviews related research before
describing the methodology followed to capture facial images, process them into drawable
contours, and convert them into 3D trajectories. The hardware and software integration,
including real-time communication with the QArm, are explained in the design section. The
system’s performance is evaluated using both simulation and real-world drawing results,
highlighting strengths and limitations. Finally, the report discusses conclusions and possible
future improvements, including advanced Al processing and enhanced control strategies.

2. Theoretical Frame of Reference

This part of the project is dedicated to clarifying the fundamental concepts that support the
development of the sketching system. It provides essential theoretical knowledge on robotic
control, image processing, and system integration, which will be expanded upon in later
sections to show how they have been applied in the project.

2.1 Quanser:

The robot selected to achieve the objectives of this work is the Quanser QArm, a 4-DOF
articulated robotic manipulator developed for research and academic applications. It is
equipped with precise servo motors, a tendon-driven gripper, and integrated current
sensing, providing a compact yet capable platform for implementing real-time control and
trajectory planning. With its highly accurate positioning and smooth motion, the QArm is well
suited for tasks that require spatial precision such as drawing. Figure 2.1 illustrates key
specifications of the QArm robot used in this study [6].

The QArm is connected to the host system using QUARC real-time software, which allows
direct programming in Simulink and supports closed-loop control using encoder and current
feedback. The robot can follow pre-defined paths using trajectory commands defined in
MATLAB or Simulink and transmitted in real-time via USB. Its integrated sensors and modular
design also support learning-based control strategies like lead-through teaching or vision-
guided motion [7].

The system enables position control with PWM or analog signals and allows custom

nipulator weight 8.25kg

Reach 750 mm

Repeatability +0.05 mm

Camera 1tel® RealSense™ D415

nterfac LSB (QFLEX 2

nternal control modes *osition mode, Current mode

External control rate

nternal control rate (min

Expandable I/ AWM Analog/ FC/SPI/UAR

Minimum and maximum joint range

Figure 1.1: Specification of Quanser

development of inverse and forward kinematics models. These capabilities are essential in
transforming 2D image contours into accurate 3D movements on the drawing surface.

2.2 Software

For this project, the selection of software is essential not only for robotic control but also for
the image acquisition, pre-processing, path planning, and real-time simulation-execution
cycle. The two main tools used in this work are MATLAB/Simulink (for control modeling and
communication with the robot) and OpenCV (for image processing and sketch extraction).

2.2.1 MATLAB/Simulink and QUARC

MATLAB and Simulink are developed by MathWorks and provide a powerful numerical
computing environment and a model-based design platform, respectively. In this project,
Simulink is used as the primary environment for designing and simulating control
algorithms, including inverse kinematics, trajectory generation, and impedance control
modules for the QArm robot. This graphical programming environment allows users to
design complex control systems visually without manually writing extensive code [8].

The connection between Simulink and the physical QArm hardware is achieved through the
QUARC real-time control software, developed by Quanser. QUARC provides blocks that
integrate directly into Simulink models, allowing real-time execution, sensor data
acquisition, and actuator command streaming. This makes it possible to synchronize the
QArm’s motor control with processed visual data, enabling closed-loop operation [9]. This
modular setup enables real-time trajectory testing, visualization, and debugging, and makes
the system robust for experimental robotics. Additionally, trajectory logging and live plotting
in MATLAB facilitate validation and tuning of motion behavior.

2.2.2 OpenCV

In this project, OpenCV serves as the primary tool for image processing tasks. As an open-
source library originally developed by Intel, OpenCV offers a wide range of computer vision
algorithms that support the objectives of this work. It enables operations such as
thresholding, edge detection, and image segmentation, which are essential for transforming
facial images into simplified sketch-like contours. The version utilized for this project is
OpenCV 3.4.2[10].

2.3 Vision System and Camera Integration

The vision system is a crucial component of this project, responsible for capturing and
interpreting visual information used to guide the robotic drawing process. In this work, a 2D
RGB image is acquired through a camera and processed using OpenCV functions to extract
the relevant features of a human face. This involves converting the raw image into a format
thatisolates edges and contours suitable for trajectory generation. The RGB image is treated
as a 3D matrix, where the first two dimensions represent pixel locations and the third holds
intensity values across red, green, and blue channels. Each pixel carries an intensity value
ranging from 0 to 255, which defines the color and brightness at that location. These values
are processed to enhance contrast and remove noise [10].

To enable real-time image acquisition and sketch extraction, this project incorporates the
Intel RealSense D415 RGB-D camera, which plays a central role in capturing facial data and
translating it into trajectories for robotic drawing. The D415 combines a high-resolution RGB
sensor with depth perception capabilities using an infrared projector and stereo depth
sensors. It delivers a depth resolution of up to 1280%720 and a depth range of approximately
0.3 to 10 meters, which is sufficient for close-range facial imaging under indoor lighting
conditions. The camera is mounted rigidly in front of the subject and calibrated to ensure its
output aligns with the QArm’s reachable workspace on the drawing board. Figure 2.3
illustrates key specifications of the Intel Camera used in this study [11].

Environment Indoor and outdoor
Depth Technology Active infrared (IR) stereo
/////I/IIIII/ Image Sensor Technology Rolling shutter: 14 pm = 14 um pixel size
,”I[,I’ Depth Field of View (FOV) (Honzontal x Vertical) for HD 69.4 x 425° (4/-3%
16:9
L1 Depth Stream Output Resolution Up to 1280 = 720 pixels

. Depth Stream Output Frame Rate Up to 90 fps
Minimum Depth Distance (Min-Z) 0.16m
Maximum Range ~10 m
RGB Sensor Resolution and Frame Rate Up to 1920 = 1080 pixels at 30 fps
RGB Sensor FOV (Horizontal x Vertical) 69.4 < 425° (+/-39
Camera Dimension (Length x Depth x Height) 99 mm * 20 mm * 23 mm
Connector USB Type-C

Figure 2.3: Specification of Intel Real Sense Camera [11]

9

2.4 Image Processing

In this project, edge detection plays a central role in extracting the primary contours from
facial images. Edge detection involves identifying points where image brightness changes
sharply, which often corresponds to object boundaries. Among the various methods
explored, the Sobel and Prewitt operators were tested due to their simplicity and
effectiveness in detecting gradients in specific directions [12]. Preprocessing techniques
such as Gaussian blur and bilateral filtering were applied beforehand to reduce noise.
Bilateral filtering was effective at smoothing the image while preserving important edge
features [13]. The Canny edge detector was ultimately selected for its multi-stage process
combining Gaussian smoothing, gradient calculation, non-maximum suppression, and
hysteresis thresholding, which together yield clean and continuous edges [14]. This method
has become a widely used standard in computer vision for generating binary sketches
suitable for robotic path planning [15].

Segmentation methods were used to separate the object of interest (face) from the
background. Thresholding-based segmentation was implemented, including global and
adaptive thresholding approaches [16]. Global thresholding methods such as Otsu’s
algorithm rely on image histograms to determine a single threshold value, whereas adaptive
thresholding dynamically changes the threshold based on local intensity variation [17].
These approaches were useful when dealing with varied lighting conditions. Other
segmentation techniques like watershed and clustering were also considered for their
capability to delineate complex shapes and objects within the image [18]. Thresholding
proved to be effective in isolating facial features from cluttered scenes, enabling the robot
to focus only on relevant drawing regions.

Other alternatives like the SUSAN detector, Moravec operator, and Trajkovic's fast corner
detector were evaluated for completeness but were not deployed in the final version [19].

2.5 Control of the Robot

After processing the image, the robot needs to execute movements along a path to draw the
final sketch. To perform these movements in the most effective manner, it is essential to
consider concepts regarding how these movements are carried out, their limitations, and
how they can be controlled.

2.5.1 Type of Joints, Movement, and Interpolation

Robotic arms consist of rigid links connected by joints, which are actuated to produce
motion. The two primary joint types are prismatic (translational) and revolute (rotational),
and combinations of these form the architecture of various robot configurations. The
arrangement of joints and degrees of freedom (DOF) directly influences a robot’s ability to
reach different poses and perform tasks in complex environments. Common robotic

10

structures include Cartesian, cylindrical, spherical, SCARA, and anthropomorphic
configurations, as illustrated in Figure 2.5.1. Each configuration suits specific applications
depending on workspace shape, required flexibility, and control complexity [20]. For
instance, anthropomorphic robots typically offer higher dexterity and are capable of
navigating obstacles through redundant DOFs.

- lindric Rot Pol I"vrl Sel 1
0 ; 1 § e 'olar or spheric Robot
Cartesian Ro vlindric Robot Rok

SCARA Robot Angular or anthropomophic Robot

Figure 2.5.1: Common robot configurations including Cartesian, Cylindrical, Polar, SCARA, and Anthropomorphic designs
[20]

2.5.2 Controllers and Feedback

Controllers play a fundamental role in robotic systems by processing input signals and
generating corresponding actuator commands that guide robot behavior. They serve as the
decision-making core, executing pre-programmed algorithms based on sensory data and
user-defined objectives. The design of these control systems must accommodate
environmental uncertainty and task complexity, which is why flexible controller structures
are often used in modern robotics [21]. To ensure task precision, feedback mechanisms are
employed to monitor the actual state of the robot and compare it to the desired setpoint. The
resulting error is then used to adjust commands and improve accuracy.

Robotic systems typically utilize either open-loop or closed-loop control structures. Open-
loop control is suitable for repetitive or non-critical tasks where feedback is unnecessary,
whereas closed-loop systems are better suited for dynamic environments that require
continuous adaptation. Closed-loop control, also known as feedback control, employs
sensors to monitor position, torque, or force, which helps maintain desired performance
even when disturbances occur [22]. Vision controllers are a special case of feedback
systems, where cameras provide real-time environmental input, enhancing accuracy in
positioning and manipulation tasks [23]. In this project, such feedback is crucial for
maintaining consistent marker pressure and trajectory tracking. Figure 2.5.2 illustrates a
typical closed-loop control system architecture, highlighting the role of each componentin
error correction and task execution [24].

11

Set point

Control Comparator

signal Controller

f Feedback signal ﬁ
Manipulated \ 4

variable .
Control Measuring
| Process m—lp

element element
Input Output

Variable
amplitude

Controlled
variable

Figure 2.5.2: Closed-loop control system schematic showing setpoint tracking with feedback signal comparison [24].

2.5.3 Trajectory Planning

Trajectory planning refers to the process of determining the time-dependent position,
velocity, and acceleration profiles that a robot manipulator must follow to execute a desired
motion smoothly and accurately. As part of motion planning, it bridges the gap between path
planning and real-time control by considering kinematic and dynamic constraints such as
joint limits, velocity bounds, and acceleration profiles. Trajectory planning is typically done
in either Cartesian space or joint space, and the trajectory itself can be designed as either
point-to-point or continuous motion depending on the application. Figure 2.5.3 illustrates
this structure, showing how trajectory planning fits within the larger framework of robotic
motion planning.

Path
planning

Motion
planning

Cartesian
space

Trajectory
planning

Point to Continuous
point path

Figure 2.5.3: Relationship of trajectory planning within motion planning [25]

3. Literature Review

The use of vision-guided robotic manipulators for drawing and sketching has evolved
significantly over the years, driven by advancements in computer vision, kinematics, and
control systems. Early robotic arms were primarily developed for industrial tasks in
hazardous or repetitive environments. The first known industrial robot patent, attributed to
George Devol in 1954, laid the groundwork for the development of programmable
manipulators capable of performing complex tasks autonomously [26]. The definition of
robots as “reprogrammable, multifunctional manipulators” [27] has since expanded to
include collaborative robots, or cobots, which can safely interact with humans in shared

12

environments. Their adoption is rapidly growing across domains such as education,
manufacturing, and even art [28], [29].

One of the earliest milestones in robotic drawing dates to the 18th century, when Pierre
Jaquet Droz created mechanical automata capable of producing sketches [30]. In the mid-
20th century, Jean Tinguely’s kinetic sculptures and Harold Cohen’s AARON software
represented early explorations into generative robotic art [31], [32]. AARON implemented
rule-based logic to generate stylized line drawings autonomously [33]. Later developments
saw robotic systems integrate face detection and image processing to generate realistic
portraits. For example, Calinon et al. introduced a robot that could detect human faces and
iteratively reconstruct sketches [34], while Moura’s Artsbot explored abstract drawing using
mobile platforms [35]. These early efforts established the viability of combining vision and
path generation.

More recent advancements focus on enhancing the artistic quality, accuracy, and
interactivity of robotic drawing systems. Aguilar and Lipson developed a 6-DOF robot that
used internal feedback to adjust brushstroke styles [36], and Lu et al. integrated vision
feedback to create pen-and-ink sketches [37]. Gasparetto et al. emphasized trajectory
optimization to enhance the quality of robot-generated artwork [38]. Grosser’s work
introduced an auditory feedback loop, allowing robots to respond to sound environments
during sketching [39]. Tresset et al. built facial sketching systems that continuously
improved using visual feedback [40], [41], while Jean-Pierre et al. used industrial robots for
detailed portrait drawing [42].

Industrial-grade systems have also attempted to replicate human brush techniques.
Lindemeier and Deussen’s e-David used stroke layering and non-photorealistic rendering
(NPR) for expressive art creation, combining feedback control with aesthetic rules [43].
Subsequent efforts extended to colorful painting systems [44], graffiti-capable collaborative
robots [45], and interactive games like tic-tac-toe with robotic partners [46]. Chen et al. used
redundant robots to ensure better adaptability in spray painting tasks [47]. The RobotArt
competition, launched by Andrew Conru in 2016, further pushed the boundaries by inviting
teams to build robotic artists capable of producing expressive work [48].

The diversity of recent research showcases both fixed-arm and mobile platforms. Galea and
Kry created a tethered drone that performed stippling on canvases [49], while Shih and Lin
developed trajectory control for mobile sketching robots [50]. Luo et al. and Dong et al. both
leveraged SCARA arms for stylized image replication using coordinate-based algorithms
[51], [52]. Song et al. used a 7-DOF impedance-controlled manipulator to enable surface-
adaptive drawing [53], and Vempati et al. demonstrated 3D spray painting using autonomous
UAVs like PaintCopter [54].

13

Recent works have also addressed system integration and user interaction. Karimov et al.
produced full-color artworks using traditional paint media [55], and Igno et al. developed
interactive systems for realistic acrylic painting using region-based analysis [56]. Human-
robot collaborative art, exemplified by Sougwen Chung, highlights the increasing synergy
between human creativity and robotic precision [57]. Scalera et al. further explored adaptive
trajectory planning for spray-based robots, with variants using tools like knives, sponges,
and watercolors [58],[59].

Although a wide range of robotic artists exists, most systems focus either on visual
perception or on motion planning, rarely both in an integrated form. This project contributes
by using a QArm manipulator with an Intel RealSense camera to perform 3D-to-2D image
conversion, force-controlled gripping, and trajectory-executed sketching on a physical
board, thereby bridging existing gaps in combined vision, force, and motion integration.

4. Methodology

To ensure the project proceeds in a structured and efficient manner, the Design Science
Research Methodology (DSRM) has been selected. This methodology provides a systematic
framework for creating and evaluating technical artefacts, particularly in engineering and
design contexts. It supports innovation through iterative development and testing, aligning
closely with the vision-based robotic sketching objectives of this project. The DSRM, as
proposed by Peffers et al. [60], consists of six core steps: (1) identifying the problem and
motivation, (2) defining the objectives for a solution, (3) designing and developing the
artefact, (4) demonstrating the solution’s use in a relevant context, (5) evaluating its
performance against the goals, and (6) communicating the results to relevant audiences.
These steps are illustrated in Figure 4.1.

The methodology begins by establishing the need to automate sketching tasks using a
robotic manipulator, particularly addressing challenges in accuracy, visual detection, and
force-controlled drawing. From there, the solution objectives were determined based on
required functionalities, namely, camera integration, kinematic control, and smooth
trajectory execution. The artefact developed includes Simulink models for kinematics,
trajectory generation, and feedback systems, supported by MATLAB scripts for vision
processing. Once developed, these modules were demonstrated through simulations and
physical experiments using the QArm. The performance was evaluated based on criteria
such as drawing precision, repeatability, and trajectory fidelity. Finally, the results and
findings are being compiled into scholarly documentation for dissemination.

14

Y Y s — | |
=]
O iOnmiOsnFOnnl Ol O
. Défnet Desan b '? DeicsTance | 9 EvaLuancd 3 | Comemcinoy
_ PROBEN | 9 owscves o peveLoE | 3 ¥ . 2
Kominal process & womware 50U § é Fing sualabiy | 8 Oounehow | & Scholary
sequence . E| At ot | fm'“ e pubkcatons
Dedire probigm | S P 8 g g
Show badter tfact E Uity | < | pabackiy | & | Prokssony
mpuiance acvmpish? T | sohwpotion | 8 deson | 8 | poblcatons
£ g
H
PROBLEM- OBJECTIVE-
CENTERED CENTERED
INmATION SoLunon

Possbie Research Entry Points

Figure 4.1: The DSRM Process Framework [60]

5. Design and Development

This section outlines the complete system setup, both in hardware and software, as well as
the methodology applied in converting visual data into physical motion through the QArm
manipulator. While the system successfully demonstrated trajectory execution and real-
time control, challenges were encountered in achieving the desired sketching fidelity.

5.1 Hardware Setup and System Overview
The experimental platform was configured in the Robotics Laboratory located in the
Engineering and Science Building at San Francisco i
State University. The QArm robotic manipulator was
firmly mounted on a lab bench opposite a fixed
whiteboard using mechanical clamps to ensure a
stable reference frame for drawing. The robot was
powered using a standard power adapter, and
communication was established via USB interfaces
connected to a computer equipped with an NVIDIA
graphics card, allowing reliable data acquisition and
rendering from the Intel RealSense D415 camera. The
camera was mounted in a fixed position such that it

could acquire high-resolution RGB-D frames of the Figure 5.1.1: Real-world hardware setup showing
target subject, which were used in downstream image ¢ Q4rm robot

15

processing tasks. Figure 5.1.1 illustrates Real-world hardware setup showing the QArm
robot.

Once the hardware was physically arranged, the system followed a streamlined software
integration flow, shown in Figure 5.1.2 The image processing script, written in Python and
executed in Jupyter Notebook, was initiated to capture images and extract facial contours.
The processed trajectory points were then exported and transferred into the MATLAB
workspace for conversion into a robot-executable trajectory. MATLAB's custom script was
used to perform trajectory simplification, down sampling, and formatting. These points were
passed into a real-time Simulink model built with QUARC support to drive the QArm
manipulator. The entire system operated as an integrated vision-to-execution pipeline
across Python, MATLAB, and Simulink environments.

ROBOTIC VISION SYSTEM WORKFLOW

HARDWARE SETUP PHASE

= =
Robot Positioning System Connection
£l SOFTWARE PROCESSING PIPELINE
\ — L 5 1] 5 4
Python Launch Image Processing Data Transfer Path Generation
e st i Send trajectory points to enerate irajectory using o
v REAL-TIME EXECUTION
@
Motion Execution

System Integration: Python « MATLAB « Simulink — QUARC | Components: Vision System, Robotic Manipulator, Real-time Controf
Figure 5.1.2: Robotic vision system workflow including hardware setup, image processing, and trajectory execution.

5.2 Image Acquisition and Processing

To initiate the robotic sketching workflow, a Python-based vision module was developed to
capture facial features and convert them into edge-based trajectories. A frontal face is first
detected using the Haar Cascade classifier provided by OpenCV’s pre-trained models [61].
After initializing the webcam stream, the system captures a high-resolution frame and

16

converts it into grayscale for improved detection accuracy. Once a face is identified, an
elliptical mask is applied over the detected region with additional padding to include
peripheral contours. The masked area undergoes Gaussian blur to soften transitions and
suppress background noise. This isolated region is then processed through a contrast
enhancement pipeline using CLAHE (Contrast Limited Adaptive Histogram Equalization)
and bilateral filtering, both of which are crucial in preserving facial features while reducing
fine textures such as hair or skin blemishes.

Sketch Style Edges

y4

7

\\\
W)
\ \{

Captured Face P - ,,\
g N

Figure 5.2: Captured Face and Sketch Style Edges

To convert the pre-processed image into a sketch-style contour map, a double-pass Canny
edge detection method is applied with two threshold pairs. This technique strengthens the
line representation by combining outputs from low- and high-threshold filters. Post-
processing steps include morphological opening and dilation to remove noise and connect
broken edges. The output is then binarized and resized to a standardized canvas (512x512
px) suitable for robotic interpretation. This approach is well alighed with established
computer vision techniques for edge-preserving contour extraction, such as those
discussed in [62].

The result is a clean and robot-friendly line drawing, which serves as input to the trajectory
generation stage. Figure 5.2 displays both the captured face and its corresponding stylized
edge output. The complete script used to implement this process is available in Appendix A.

5.3 Trajectory Planning in MATLAB

Trajectory generation for robotic execution was performed through a customized MATLAB
script designed to convert the processed image sketch into a time-stamped 3D path suitable
for the QArm manipulator. The source image, produced by the Python edge detection script,
was saved directly into the working directory to ensure seamless access during the MATLAB
session. This workflow allows synchronized processing, ensuring that the face sketch

17

extracted via Python is immediately available in the MATLAB environment for path
translation. The trajectory planner script, provided in full in Appendix B, first reads the saved
sketch face output.png and binarizes the image. Using the bwboundaries function, the
sketch is segmented into discrete contour strokes. These contours are rescaled to fit the
robot’s physical workspace (approximately 0.28 m height and variable Y span) and mapped
into the Y-Z plane, while the X-axis remains fixed with minor adaptive shifts for proper
contact control. A 3D scatter plot (Fig. 5.3.1) illustrates the face drawing trajectory on the Y
and Z pane, but there is too many unwanted lines comes with the bwboundaries function.

QArm Trajectory (Lifted for Batter Angle)

Griginal Sketch

P ~.
& e
. N
7~ W
;o VY
NG \
P TN | 244
Y P N I‘f/ ‘
=N \ \ E
1 e~ \i,____ Noe
T T
— . Vi
N :"/
; = o

Figure 2.3: Raw trajectory generation without compensation: The left panel displays the original binarized sketch extracted
from the processed image, while the right panel visualizes the unadjusted 3D trajectory path as executed by the QArm.
Noticeable path distortion is present, particularly around curved features, due to the absence of adaptive Y-Z correction.
To handle drawing pressure variances across the surface, Z-based compensation adjusts
the X-depth based on vertical position, while lateral compensation corrects to asymmetric
friction near the edges. For smooth multi-stroke drawing, each new contour stroke is
prefaced with a pen-up transition sequence, consisting of lifting the pen back along the X-
axis, translating to the next stroke start point, and returning forward to contact. These
transitional trajectories are interpolated to avoid overshooting or board collisions. The
resulting path is organized into the g trajectory structure, with a consistent time vector
and a three-dimensional signal matrix specifying X, Y, and Z coordinates. This structured
format is compatible with Simulink and QUARC real-time execution. A 3D scatter plot (Fig.
5.3.2) illustrates the entire drawing trajectory, with a color gradient along the X-axis to
indicate real-time depth modulation. Such visualization aids in verifying that contact depth
adjustments are properly distributed across the sketch and highlights how trajectory fidelity
is preserved even in regions requiring pressure compensation. The chosen MATLAB path
generation strategy was inspired by robust robotic drawing literature such as that by X. Dong
et al., which emphasizes image-to-path fidelity and adaptive control during stylized portrait

replication [52].

18

Trajectory with X-Forward Color Map

Original Sketch

N
/) \\ \\3
/ i ~ \ |
Ve \
\ ’r 4 N\ \‘[/‘ = ;
y . ~~— |
J\? 7 \ 2
}L) = SR {
s PN
4 38 1
. Y
) fees ”

Y (m)

Figure 5.3.2: Trajectory generation from sketch image: The left panel shows the binarized edge sketch extracted using
Python; the right panel presents the 3D trajectory with X-axis depth modulation encoded by color, illustrating adaptive
path compensation across the Y-Z drawing surface.

6. Control System Architecture and Implementation

6.1 Overview

The development of an autonomous robotic drawing system necessitates a sophisticated
control architecture capable of precise trajectory tracking, real-time kinematic
computations, and seamless hardware integration. This section presents the
comprehensive design and implementation of a Simulink-based control framework
developed for the Quanser QArm manipulator, specifically engineered for artistic rendering
applications. The proposed architecture integrates forward and inverse kinematic solvers,
real-time trajectory processing, and closed-loop feedback mechanisms to achieve high-
fidelity reproduction of facial contours extracted from digital imagery.

The control system architecture addresses several critical challenges inherent in robotic
drawing applications: maintaining trajectory accuracy across varying drawing speeds,
ensuring joint limit compliance during complex motions, minimizing end-effector
positioning errors, and providing robust fault detection mechanisms. The implementation
leverages MATLAB/Simulink's real-time capabilities in conjunction with Quanser's QUARC
(Quanser Real-time Control) framework to establish deterministic control execution with
microsecond-level timing precision.

6.2 Kinematic Foundation and Mathematical Formulation

To support precise trajectory execution, the QArm control system relies on accurate forward
and inverse kinematic models. This section describes the complete mathematical
formulation and implementation strategy used for mapping between joint space and

19

Cartesian space. The modified geometric parameters and coordinate transformation
models are tailored to the QArm’s 4-DOF architecture and are consistent with the physical
configuration illustrated in Figure 6.2.

Ly X}A ‘X - Ly i L‘) ‘,‘X"'
b3 1 |
Ve cmc R (O
G . ‘i
4 Ps
B
L e ’
A
Ay ?
) Ay
B
0,
D20 b
Ly=A, X |20
(1 4—/:91 %

Figure 6.2: Frame diagram for the Quanser Arm manipulator

The Quanser QArm's kinematic structure is characterized by four degrees of freedom with
the following Denavit-Hartenberg parameters: link lengths L1 = 0.14m,L2 = 0.35m,L3 =
0.05m,L4 = 0.25m,and L5 = 0.15m. Let ¢1, 92, $3, p4 denote the joint angles of the
QArm after applying offset mappings from the original angular variables 61,602, 63, 64.
Similarly, let the link parameters A1, 12,13 and geometric offset § be defined as Table 6.2:

44 Ly P 0y
[z 2 LS
Az L* + Ly ¢ a; + 77 B
A3 Ly+Ls ¢ 0 +8
-1 (L
B tan ‘(3"{1-2) by 0,

Table 6.2: Linear mapping to simplify the mathematical formulations

These transformations simplify the forward and inverse kinematics while preserving physical
accuracy.

6.2.1 Forward Kinematics Implementation
The forward kinematics determines the position and orientation of the QArm’s end-effector
in Cartesian space based on its current joint angles. The transformation is defined using

homogeneous matrices Tii“, with respect to the frame configuration in Figure 6.2. The
overall transformation from base to end-effector is given by:

Tg = Td «T¢ « T3 # T3

20

Each matrix Tl-i+1 contains both rotation and translation components based on Denavit-
Hartenberg parameters. For example, the transformation from frame 0 to 1 is represented
as:

cosd; —singd; 0 0
singgy, cos¢; 0 0
0 0 1 M
0 0 0 1

ml
Ty

Subsequent matrices TZ, T3, T follow similar construction and depend on the respective
joint angles ¢2, ¢3, p4. The resulting end-effector position vector p4 and orientation matrix
R; are extracted from the final transformation Ty. The system supports real-time
computation of these matrices at 500 Hz using the fixed step ode4 solver, ensuring stable
integration within the control loop.

6.2.2 Inverse Kinematics Solver Architecture

The inverse kinematic model calculates the required joint angles to position the end-effector
at a desired point in Cartesian space. This computation is non-trivial due to the nonlinear
nature of the manipulator geometry and the presence of multiple valid solutions. The
adopted approach uses an analytical method adapted from Spong and Vidyasagar,
accounting for the QArm’s geometry.

Given a desired position p;=[x,y, z]", the angle ¢1 is computed directly as:

1Y
1_t 1
¢1 = tan p

Tofind ¢p2 and ¢3, the planar projection of the arm is considered. The wrist joint angle ¢4 is
often chosen based on end-effector orientation requirements or predefined as a static angle
for 2D drawing applications. Multiple valid inverse solutions exist (elbow-up vs. elbow-
down), and the solver selects the optimal one by minimizing joint displacement from the
previous configuration while respecting the following constraints:

$1 € [-170°,170°], ¢2 € [-80°,80°], $3 € [-95°,75°], ¢4 € [—160°,160°]

Invalid or unreachable targets trigger fallback behavior in the control loop, such as skipping
waypoints or interpolating intermediate poses. The implementation ensures continuity in
the solution space and avoids singularities near workspace boundaries.

6.3 Closed-Loop Control Architecture Design (Block-Level Explanation)
The control system for this projectis designed as a closed-loop position control pipeline that
enables the Quanser QArm to accurately follow pre-computed trajectories extracted from a

21

Clock

Trigger

1) /

Desired Position Reference

Y

et Playback x(t Inverse 6 dit Signal Filter ut QArm Hardware Gfﬂt Forward x m(t
Position Kinematics 2nd Order + Plant P(s) Kinematics

Position
Tracking
Qutput

_&

Trajectory Controller Low-Pass Copper Motors Sensor
Feedback Signal
Signal Flow Description:
1(t) = Reference input (desired trajectory) uit) = Filtered control signal
e(t) = Error signal (reference - feedback) 6_mit) = Measured jomnt angles
x(f) = Cartesian position command x_mit) = Measured Cartesian position
&_d(t) = Desired joint angles F(t) = System output (actual position)

Figure 6.3: Closed-Loop Control Flow Diagram with Signal and Kinematic Stages

processed image. This implementation is visualized in Figure 6.3, which shows both a
conceptual block diagram of signal flow and the corresponding Simulink implementation
used for real-time hardware execution. Each stage in this pipeline transforms trajectory data
into smooth motor commands while ensuring safe and stable motion of the robot in a
closed-loop control environment.

6.3.1 Playback Position Trajectory

The first component of the pipeline is the Playback block, which takes the pre-generated
trajectory data stored as a MATLAB structure and streams it point-by-point to the
downstream controller. This component is triggered by a logical clock pulse signhal that
ensures the motion only begins after system initialization. It feeds the desired 3D Cartesian
coordinate positions, denoted as x(t), at every simulation time step. This block ensures
deterministic reference delivery for precise reproduction of multi-stroke facial sketches in
space and time.

6.3.2 Inverse Kinematics Controller

The inverse kinematics block processes the desired Cartesian coordinates x(t) = [x, Y, z]
and translates them into joint-space commands 8d(t) = [¢1, ¢2, $3, p4]. This module
internally solves the geometric equations for the QArm structure using an analytical
approach based on its link configuration. To minimize trajectory discontinuities and avoid
configuration flipping, the controller utilizes historical joint positions as input (via the
phi_prev input) and selects the optimal configuration based on proximity minimization. This
decision ensures smooth angular motion and helps prevent discontinuities in the sketch
output.

6.3.3 Signal Filter: Second-Order Low-Pass Dynamics
The generated joint angle commands are passed through a second-order low-pass filter that
acts as a command conditioner. This block suppresses high-frequency fluctuations,

22

reduces the risk of hardware jerks, and filters sharp transitions resulting from digital
sampling. The filter configuration follows a critical damping setup using parameters w,,=10
rad/s and { = 1.0, ensuring a smooth yet responsive transition to the commanded angles
u(t). This filtered signal prevents overshoot and mechanical wear in the copper-core QArm
motors.

6.3.4 Hardware Plant and Execution (QArm Motors)

The filtered joint commands are then passed to the QArm hardware block via the QUARC
hardware-in-the-loop interface. This block represents the physical robot with copper-wound
actuators and includes integrated encoder feedback. The hardware executes the
commands in real time, driving the motors toward the desired joint angles 8(t) while the
system records both commanded and actual joint responses for monitoring. Safety
mechanisms, such as joint limit constraints and gripper on/off toggles, are also handled

within this block.

6.3.5 Forward Kinematics for Position Feedback

The joint encoder feedback 6,,(t) is passed through a forward kinematics block to estimate
the actual Cartesian position of the end effector, denoted x,,, (t). This computed feedback is
essential for closed-loop monitoring. The Simulink implementation uses the Quanser
gamForwardKinematics block that mirrors the robot’s physical geometry using Denavit—
Hartenberg parameters. It provides the real-time output needed for comparing actual
position against desired trajectory for error analysis and plotting.

6.3.6 Position Tracking and Output Logging

The final stage of the control chain is the Position Tracking block, which compares the
measured position x,,(t). to the reference x(t). It also records the entire trajectory path for
post-experiment analysis. The trajectory output is used for visual validation and trajectory
accuracy estimation, enabling qualitative and quantitative performance analysis. Figure

O] 1 F QUARC
desred
el Y inverse kinematics »-
- < P
Playback L »o , Commanded
: ernma 4 W1 Secand Order qamForwardKinematies R04f—+—]
Low-P: Filt:

qarminverseKinematics [e tonpa==Fi Ery P forward kinematics o joint commands

" pi_sptiml
phi_prev 4

" 4 msasured

gamForwardKinematics R4 2]

forward kinematics on joint measurements

Hardware Plant P(s)

Figure 6.3.6: Simulink Model - QArm Closed-Loop Drawing Control using QUARC Interface

23

Por
Tra

6.3.6 illustrates the exact Simulink block representation that mirrors the theoretical control
flow.

This architecture ensures robust real-time execution, smooth motion commands, and high-
fidelity reproduction of facial sketch trajectories.

6.4 Hardware Plant Subsystem: Low-Level Execution and Safety Monitoring

The hardware plant subsystem, as illustrated in Figure 6.4, encapsulates the real-time motor
execution and safety monitoring functionalities necessary for controlling the QArm
actuators and end-effector. Implemented within the Simulink environment, this module
facilitates Hardware-in-the-Loop (HIL) integration with the physical robotic system via the
QUARC real-time interface. The primary objective of this subsystem is to ensure accurate
position command execution while preserving the mechanical integrity of the robot through
constraint enforcement and current monitoring.

m

=
’_’ *
phi frad) 4] —> o ane
Co > Enabled
=0 u ¥ Phi Crnd {rad) [4] P (rad) [4 X Moving Xavg _
ET— : o
w12 —
<
Cof s
pper Current (A)
Gripper Posiion (%) ippar Crnd (%) (1)
MIOFF (booi) Phi {rad) [4]
Gripper Cantral
— T
Gripper (ON/OFF) —
D
D—» Basa RGE Led (%) .
1 »
'D—bc 0.017453 signal Threshald

measurad and
desirad position

(HIL-1)
Figure 6.4: Hardware Plant Subsystem Block Diagram

Incoming joint commands ¢4 are first passed through saturation blocks configured with
predefined angular boundaries (e.g., *m/12 radians) to limit the command range in
accordance with the physical joint constraints. This mechanism prevents unsafe or
unrealistic actuation inputs that may result in joint collision or hardware overextension. A
dedicated gripper control module processes boolean on/off inputs in conjunction with
measured gripper current values to regulate the marker-holding mechanism. This module
not only translates the control command into an actuator signal but also evaluates the

24

" 4’
time —-
[=+] [_/r | HIL If the distance is less me = .
VAN Set Proparty batwsenthe than 1 deg Il

current feedback to detect any resistive force indicating potential contact with the drawing
surface or object collision.

To mitigate noise and smooth sensor data, a moving average filter is employed on the
measured joint positions. This filtered output enhances control stability and accuracy by
reducing transient fluctuations. The filtered measurements are then routed into a vector
norm comparator that continuously evaluates the Euclidean distance between the desired
and actual joint positions. When this error norm falls below a threshold of 0.017 radians
(approximately 1°), the system registers the current drawing segment as completed. This
validation is reinforced by a timer-based gating mechanism to ensure that the position has
stabilized for a sufficient duration.

The subsystem also incorporates a real-time feedback mechanism for visual task status. A
signal is transmitted to the base RGB LED of the QArm, changing its illumination state to
indicate task progress or completion. Additionally, an HIL Set Property block is utilized to
dynamically assign low-level hardware parameters such as current limits and internal
control gains. This structured design enables the robot to perform with high reliability and
resilience, particularly during extended operation sequences involving delicate sketching
motions.

7. Demonstration and Evaluation

Concerning the previous points and the work that has been done on this project, it is
necessary to study its development to come to some conclusions. For that reason, an
evaluation must be made such as proof of how good the implementation has been. To do
this evaluation, the idea is to see if the objectives of this project have been achieved, the
quality of the results and analyze the errors and how they affect.

7.1 Simulation Trajectory Plots

To validate the full pipeline before deployment, a simulated trajectory generation was
performed using a real facial image. This stage ensures the integrity of the data transfer
between Python and MATLAB, the fidelity of the contour extraction, and the feasibility of the
robot's motion range with the generated paths.

Figure 7.1 presents a sequential visualization of the image-to-trajectory workflow. The first
image shows the captured face, which is processed by the Python script to isolate the facial
region using elliptical masking. The second image displays the stylized edge extraction result
after applying gamma correction, CLAHE enhancement, bilateral filtering, and double-pass
Canny detection.

25

This edge sketch is then passed into MATLAB for path planning using a custom script, where
each pixel contour is converted into a 3D trajectory while incorporating adaptive
compensation alongtheY and Z axes. Figure 7.1c depicts a simplified trajectory visualization
from a 2D lifted viewpoint, while Figure 7.1d includes color-coded 3D trajectory mapping
based on X-offset values. This allows for clear interpretation of movement smoothness, path
distribution, and pen-Llift transitions prior to hardware execution.

Ieptory w K2 srmand Coms Mo

Figure 7.1: (a) Captured face input, (b) stylized sketch output from Python processing, (c) simplified 2D trajectory lifting for
shape verification, (d) 3D trajectory map with X-based compensation color coding.

The figure validates that the system correctly interprets human facial geometry into robotic
motion paths, making it an essential stage for safety, alignment verification, and debugging
before proceeding to real-time control.

7.2 Real-World Drawing Snapshots
The real-world evaluation of the QArm drawing system was conducted to validate the
simulation-based trajectory in a physical setting using the robot’s end-effector to draw on a
whiteboard surface. The experiments involved executing the planned facial contour
trajectories, which were originally generated from the image processing pipeline and verified
in simulation. The robot was programmed to follow the full rF' ‘

set of 3D waypoints, including return-to-home movements g
and trajectory lifts between strokes to avoid marker
dragging. Figure 7.2.1, snapshots QArm robot drawing in
real time during physical experiment.

As shown in Figure 7.2.2, multiple shapshots were captured
during different stages of the physical drawing process. The
images display the robot arm actively sketching and the
resulting outputs on the board. These physical results

illustrate that the robot maintained continuous contact
Figure 7.2.1: QArm robot drawing in real

across most strokes, successfully reproducing time during physical experiment

26

distinguishable facial outlines. The compensation logic played a critical role in adjusting the
X-axis pressure based on Z-depth and lateral Y positioning, ensuring consistent marker
contact and avoiding missing regions.

r -

Figure 7.2.2: (a) Initial drawing result using early-stage compensation. (b) Mid-phase execution showing improved facial
contours. (c) Final refined sketch from compensated trajectory.

8. Result, Discussion and Limitations

The proposed robotic sketching system successfully integrates trajectory planning, inverse
kinematics control, and real-time low-level execution to reproduce facial sketches on a
whiteboard surface. As demonstrated in the real-world experiments, the QArm manipulator
was able to autonomously capture a face image, extract sketch-style contours, generate an
adaptive trajectory, and execute the drawing task on a vertical plane. However, the final
drawing accuracy remained limited by mechanical, environmental, and segmentation
constraints, which were more pronounced in practical execution than in simulation.

To quantify the fidelity of the trajectory tracking subsystem, Figure 8.1 presents the evolution
of the end-effector position along the X, Y, and Z axes during a representative drawing
segment. The plot compares the desired trajectory r(t), the filtered commanded path u(t),
and the actual measured position y(t) obtained via forward kinematics. The close alignment
between the commanded and measured curves confirms that the second-order low-pass
filtered control signals were effectively tracked by the QArm hardware plant. Minor
deviations observed in the Y-axis around t = -18 seconds are attributed to surface
compliance and micro-stalling of the pen tip under higher friction. Across all three axes, the

27

RMS tracking error remained below 2.5 mm, demonstrating the accuracy and robustness of
the implemented control architecture under real-world conditions.

The core control pipeline, which incorporates a closed-loop position tracking loop,
performed reliably under real-time hardware constraints. The inverse kinematics solution

rrrrrr ‘Sampie vasea |0 24

F)’gure 8.1: Desired vs Commanded vs Measured Trajectory in X, Y, and Z axes for a drawing path segment. The solid Ilnes
represent the desired reference trajectory, the dashed lines indicate the commanded control signals, and the dotted lines
show the actual measured position feedback from the QArm encoders.

maintained stable operation across the full trajectory, with the joint angle updates filtered
through a second-order low-pass system tuned to prevent jerky motions. The execution
frequency of 500 Hz ensured tight synchronization between playback reference and physical
actuation. As reflected in the trajectory plot of Figure 8.1, the commanded and measured
positions in X, Y, and Z axes followed the desired path with millimeter-level fidelity for most
drawing sections, validating the correctness of the control desigh and implementation.

Nevertheless, despite this control precision, the actual sketch output deviated significantly
from the ideal visual outcome. One major source of distortion arose from the absence of
semantic segmentation in the trajectory data. The edge extraction algorithm treated the
sketch as a single connected mask, rather than identifying discrete facial components such
as the mouth, nose, eyes, and jawline as separate strokes. As a result, the robot lacked
directional control orintentional order in the stroke sequencing. This led to an unnatural path
traversal pattern, often causing redundant marker lifts, overlapping strokes, and ambiguous
connections between features. For example, the jawline could be drawn last instead of
framing the face, while lips and eyes could be connected inappropriately due to incorrect
stroke grouping.

28

Another critical mechanical factor influencing drawing quality was the orientation of the
end-effector during contact. While the drawing trajectories were projected assuming planar
contact perpendicular to the board, the QArm's physical geometry and limited wrist
flexibility resulted in an angular approach during most of the sketch. The marker tip often
contacted the board with a tilt, rather than perpendicularly, introducing asymmetric friction
and inconsistent stroke width. This tilt-induced error also caused some strokes to partially
skip the surface, especially on the right or lower sections of the sketch, where joint angles
pushed the end-effector further from its ideal normal orientation.

Material constraints of the QArm hardware further compounded the drawing issues. The
plastic-based structure exhibited moderate flex during fast transitions, and the integrated
gripper lacked compliant motion or force sensing. Since the marker was rigidly mounted and
clamped at a fixed offset, there was no ability to self-adjust for surface curvature, pen length
variability, or dynamic damping. This inflexibility contributed to either excessive pressure,
flattening the marker and widening strokes—or insufficient contact, leading to floating lines.
In particular, the thin vertical jaw gripper design was not optimized for precision tip control
or dynamic wrist reorientation, making fine artistic control impractical without additional
hardware.

Despite these physical limitations, the system demonstrated reliable and repeatable
trajectory execution and successful image-to-motion translation in multiple trials. The
integrated control framework performed consistently across different faces and lighting
conditions. Visual analysis of the board output revealed a recognizable human likeness in
most cases, though often lacking in proportional detail and stroke consistency. The robot
showed robustness in point-by-point sketching, with reliable marker lift and placement logic
to avoid unintended line connections. However, the drawing quality remained well below
that of trained human sketching, emphasizing the need for future integration of intelligent
path reordering, per-stroke feature segmentation, and adaptive end-effector compliance.

In conclusion, while the QArm robot's control architecture performed with high reliability
and precision, the final sketch results were constrained by mechanical, geometric, and
perceptual limitations. The experiment highlights the clear distinction between good control
execution and good artistic rendering—an area where trajectory structure, segmentation
strategy, and physical contact mechanics must be jointly optimized. Nevertheless, the
system demonstrates a strong proof-of-concept platform for vision-to-motion
transformation and robotic drawing research in educational and prototyping environments.

29

9. Conclusion

This project presented a complete pipeline for robotic sketch replication using the Quanser
QArm platform. The system integrated real-time facial image acquisition, adaptive sketch
edge processing, and smooth trajectory generation using MATLAB and Python. These
trajectories were executed through a closed-loop Simulink control framework, which
included inverse kinematics, signal filtering, and joint space feedback via QUARC. The
control system demonstrated stable performance and reliable execution of complex
drawing paths, with RMS position tracking error remaining under 2.5 mm. Visual results
showed clear alighment between the input sketch and the robot's path-following behavior
on a vertical whiteboard surface.

However, the physical limitations of the QArm hardware affected overall sketch fidelity. The
gripper lacked compliance with consistent contact pressure and was not perpendicular to
the board, causing visible distortion in certain areas such as lips and eyes. Additionally, due
to limited segmentation of facial features, continuous strokes across disconnected regions
introduced unwanted lines, suggesting the need for finer stroke classification and
directional planning. Despite these issues, the project successfully validated the feasibility
of vision-guided robotic sketching and established a foundation for future improvements in
force-controlled drawing and orientation-aware end-effector path planning.

10. Future Opening

Future extensions of this work will focus on improving sketch accuracy and robustness
through enhanced segmentation and direction-aware trajectory generation. By individually
isolating facial components such as eyes, nose, lips, and jawlines, the trajectory planner can
generate discrete, logically ordered strokes with controlled marker engagement and lift
timing. This approach would eliminate undesired overlapping or disconnected lines,
resulting in clearer and more human-like sketches. Additionally, stroke planning based on
local curvature and feature relevance could further improve the legibility and aesthetic
quality of the robotic drawings.

From a hardware perspective, future improvements should include redesigning the end-
effector to maintain perpendicular alignment with the drawing surface. The current QArm
configuration lacks wrist actuation or compliance, which limits the range of drawing poses
and results in uneven contact. Integrating a tilt-correcting passive joint or actively controlled
wrist module could allow the marker to dynamically adjust its orientation for consistent
surface contact. Furthermore, incorporating real-time force sensing and compliance control
would enable the system to detect excessive pressure or floating conditions, allowing
adaptive correction during drawing operations. These upgrades would significantly enhance
both drawing fidelity and long-term reliability of the robotic system.

30

11. Reference

[1] A. Pagliarini and H. H. Lund, “Robot Creativity: The Art of Playing Musical Instruments,”
Proceedings of the Ninth International Conference on Computational Creativity (ICCC),
2017.

[2] M. Heer, Robotics 2021: The Next Wave of Automation, Springer, 2021.

[3] T. Maly, M. Sedlacek, and P. Leitao, “Human-robot cooperation in Industry 4.0,” in IFAC-
PapersOnLine, vol. 49, no. 12, pp. 127-131, 2016.

[4] M. Aiman, R. Razali, A. Mohd Azman, and R. A. Rahman, “A Survey on Human-Robot
Collaboration in Industrial Settings,” International Journal of Advanced Computer Science
and Applications (IJACSA), vol. 7, no. 9, pp. 77-84, 2016.

[5] F. Tobe, Can a robot be an artist?, IEEE Spectrum, 2015.
[6] Quanser Inc., QArm User Manual, Rev 1.2, Markham, ON, Canada, 2021
[7] Quanser Inc., QArm Data Sheet, Markham, ON, Canada, 2021.

[8] The MathWorks Inc., Simulink: Simulation and Model-Based Design, Natick, MA, USA,
2021.

[9] https://www.quanser.com/products/quarc-real-time-control-software/

[10] OpenCV.org, 2019

[11] Intel Corporation, "Intel RealSense Depth Camera D415 Datasheet," 2021. [Online].
Available: https://www.intelrealsense.com/depth-camera-d415/.

[12] A. Gupta, “Image edge detection using Prewitt and Sobel operator,” International
Journal of Computer Science and Information Technologies, vol. 4, no. 3, pp. 451-454,
2013.

[13] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings
of the Sixth International Conference on Computer Vision, 1998, pp. 839-846.

[14]). F. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986.

31

https://www.quanser.com/products/quarc-real-time-control-software/
https://www.intelrealsense.com/depth-camera-d415/

[15] M. Hosang, M. Benenson, and B. Schiele, “Learning non-maximum suppression,” I[EEE
CVPR, 2017.

[16] D. Bradley and G. Roth, “Adaptive thresholding using the integral image,” Journal of
Graphics Tools, vol. 12, no. 2, pp. 13-21, 2007.

[17]1A. Al-Amri, S. K. Kalyankar, and K. D., “Image Segmentation by Using Threshold
Techniques,” Journal of Computing, vol. 2, no. 5, pp. 83-86, 2010.

[18] M. Kaur and R. Kaur, “A Survey on Various Image Segmentation Techniques,”
International Journal of Computer Science and Mobile Computing, vol. 3, no. 5, pp. 809-
814, 2014.

[19] S. M. Smith and J. M. Brady, “SUSAN - A New Approach to Low Level Image
Processing,” International Journal of Computer Vision, vol. 23, no. 1, pp. 45-78, 1997.

[20]J. Rosales and W. Gang, “Robot Types and Structures,” International Journal of
Robotics and Automation, vol. 19, no. 3, pp. 215-224, 2002.

[21] M. Kickert and E. H. Mamdani, “Analysis of a fuzzy logic controller,” Fuzzy Sets and
Systems, vol. 1, no. 1, pp. 29-44, 1978.

[22] D. Borovic et al., “Compensation of hysteresis in piezoelectric actuators based on
inverse Preisach model,” Smart Materials and Structures, vol. 14, no. 4, 2005.

[23] M. Sogo, H. Ishiguro, and T. Ishida, “A learning method for vision-based tracking,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2000.

[24] Ranjith, A., “Feedback Control Loop in Robotics,” International Journal of Automation,
vol. 6, no. 2, pp. 55-62, 2018.

[25] G. Chen, N. Wei, L. Yan, and J. Li, “Time-optimal trajectory planning based on event-
trigger and conditional proportional control,” [EEE Transactions on Industrial Informatics,
vol. 19, no. 1, pp. 230-241, Jan. 2023.

[26] G. Devol, “Programmed Article Transfer,” U.S. Patent 2,988,237, 1954.
[27] L. Cardona et al., “Fundamentals of Robotics,” Springer, 2014.

[28] R. Murphy, Introduction to Al Robotics, MIT Press, 2017.

32

[29] H. Reisinger, “Future of Work with Cobots,” Robotics Today, vol. 12, no. 3, pp. 34-40,
2019.

[30] History Computer, “The Origins of Drawing Robots,” 2021.
[31] Wikipedia, “Jean Tinguely,” 2020.

[32] H. Cohen, “The Further Exploits of AARON, Painter,” Stanford Humanities Review,
1995.

[33] P. Cohen et al., “Imaginative Reasoning in Al,” Springer, 2016.

[34] S. Calinon et al., “Learning and Reproducing Gestures by Imitation,” Robotics and
Autonomous Systems, vol. 50, no. 3, pp. 195-210, 2005.

[35] L. Moura, “Artsbot: Robotic Action Painter,” Proc. ICRA, 2007.

[36] C. Aguilar and H. Lipson, “A Robotic System for Artistic Brushstrokes,” IEEE Robotics &
Automation Magazine, vol. 15, no. 4, pp. 45-52, 2008.

[37]Y. Lu et al., “Pen-Ink Drawing with Visual Feedback,” Mechatronics, vol. 19, no. 2, pp.
225-234, 2009.

[38] A. Gasparetto et al., “Path Planning Optimization for Artistic Robots,” Mechanism and
Machine Theory, vol. 45, no. 3, pp. 300-314, 2010.

[39] M. Grosser, “Interactive Sound-Painting Robot,” Artif. Intell. and Creativity, vol. 2, 2011.

[40] P. Tresset and F. Fol Leymarie, “Robot Portrait Drawing,” ACM Transactions on
Graphics, vol. 31, no. 4, 2012.

[41] P. Tresset et al., “Enhancing Visual Feedback for Sketching Robots,” IROS, 2013.

[42]).-P. Lebreton and Z. Said, “Visual Feedback for Industrial Robot Drawing,” IEEE Trans.
Automation Science and Engineering, vol. 9, no. 4, pp. 678-685, 2012.

[43] T. Lindemeier and O. Deussen, “e-David: Feedback-Controlled Painting Robot,” NPR
Workshop, 2012.

[44]Y. Luo et al., “Color Painting Robot Using Layer Decomposition,” Mechatronics and Art,
2016.

[45] D. Berio et al., “Baxter Robot for Graffiti Stroke Drawing,” Robotics and Art, 2016.

33

[46] N. Jaquier, “Interactive Drawing Robot for Games,” ACM CHI, 2016.

[47]W. Chen et al., “Redundant Painting Robot for Surface Coating,” Sensors and Actuators
A, vol. 245, 2016.

[48] A. Conru, “RobotArt Competition,” 2016.

[49] B. Galea and P. Kry, “Tethered Drones for Ink-Based Stippling,” IEEE Trans. Visualization
and Computer Graphics, vol. 23, no. 5, pp. 13491357, 2017.

[50] C.-L. Shih and L.-C. Lin, “Trajectory Planning for Mobile Drawing Robots,” JARS, vol. 21,
no. 2, pp. 140-150, 2017.

[51]R.-C. Luo et al., “Cartoon Portrait Drawing Robot Using NPR,” IEEE Trans.
Mechatronics, vol. 23, no. 6, pp. 2407-2416, 2018.

[52] X. Dong et al., “Stylized Portrait Drawing Using SCARA Arm,” Control Engineering
Practice, vol. 82, pp. 34-42, 2018.

[53] D. Song et al., “Impedance-Controlled Pen Drawing on Arbitrary Surfaces,” IEEE
Access, vol. 6, pp. 25789-25800, 2018.

[54] A. S. Vempati et al., “PaintCopter: Autonomous Spray Painting with UAVs,” Robotics
and Autonomous Systems, vol. 109, pp. 104-112, 2018.

[65] M. Karimov et al., “Human-like Artistic Painting by Robot,” Robotics and Al Review, vol.
3,2019.

[56] O. Igno et al., “Acrylic Painting Cartesian Robot with Region-Based Focus,” Sensors,
vol. 19, no. 3, 2019.

[57]1S. Chung, “Human-Robot Co-Creation in Art,” ACM Transactions on Human-Robot
Interaction, vol. 8, no. 2, 2020.

[58] L. Scalera et al., “Spray Painting and Watercolor Robot Techniques,” Journal of
Intelligent & Robotic Systems, vol. 88, no. 4, pp. 673-692, 2017.

[59] G. Trigatti et al., “Trajectory Optimization for Artistic Spray Robots,” ICRA, 2018.

[60] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science
Research Methodology for Information Systems Research,” Journal of Management
Information Systems, vol. 24, no. 3, pp. 45-77, 2007.

34

[61] K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” in Graphics Gems
1V, Academic Press, 1994.

[62] R. Tarekegn, “Canny Edge Detection Step by Step in Python,” Medium - Data Science,
2021. [Online]. Available: https://medium.com/data-science/canny-edge-detection-step-

by-step-in-python-computer-vision-b49¢c3a2d8123

12. Appendix

12.1 Appendix A — Python Script
import cv2

import numpy as np

import matplotlib.pyplot as plt

def capture_face():

"""Capture and mask only the face using ellipse

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades +
'haarcascade_frontalface_default.xml')

cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)

cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)

for _inrange(10):
ret, frame = cap.read()
if not ret:

cap.release()

raise Exception(" X Camera initialization failed")

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

35

https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

gray = cv2.equalizeHist(gray)

faces =face_cascade.detectMultiScale(gray, 1.1, 4, minSize=(100, 100))

if len(faces) == 0:
cap.release()

raise Exception(" X Face detection failed - ensure good lighting and front-facing
position")

(%, ¥, w, h) = max(faces, key=lambda f: f[2]*f[3])
margin = int(min(w, h) * 0.2)

X, ¥, W, h =x-margin, y-margin, w+2*margin, h+2*margin

mask = np.zeros_like(gray)
cv2.ellipse(mask, (x+w//2, y+h//2), (w//2, h//2), 0, 0, 360, 255, -1)
mask = cv2.GaussianBlur(mask, (99, 99), 0)

mask = mask/ 255.0

frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

face_only = (frame_rgb * np.stack([mask]*3, axis=-1)).astype(np.uint8)

cap.release()

return face_only, (X, y, w, h)

def final_line_drawing_sketch(face_img, face_rect):

"""Clean, stylized facial sketch suitable for robotic path planning

X, ¥, w, h =face_rect

36

padding = int(max(w, h) * 0.22)

Crop face region
face_roi =face_img[
max(0, y - padding):min(y + h + padding, face_img.shape[0]),

max(0, x - padding):min(x + w + padding, face_img.shape[1])

gray = cv2.cvtColor(face_roi, cv2.COLOR_RGB2GRAY)

Step 1a: Gamma correction (brighten face)

gamma=1.5 #Youcantry1.2t0 1.8

inv_gamma=1.0/gamma

table = np.array([(i / 255.0) ** inv_gamma * 255 for i in np.arange(256)]).astype("uint8")

gray = cv2.LUT(gray, table)

Step 1: Enhance contrast & suppress beard/texture

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

enhanced = clahe.apply(gray)

smooth = cv2.bilateralFilter(enhanced, d=9, sigmaColor=75, sigmaSpace=75)

blur = cv2.GaussianBlur(smooth, (3,3), 0.7)

Step 2: Double-pass Canny edge detection
edges1 = cv2.Canny(blur, 30, 70)

edges2 = cv2.Canny(blur, 50, 120)

edges = cv2.bitwise_or(edges1, edges?2)

37

Step 3: Post-process lines for cleanness
kernel = np.ones((2,2), np.uint8)
edges = cv2.morphologyEx(edges, cv2.MORPH_OPEN, kernel)

edges = cv2.dilate(edges, kernel, iterations=1)

Step 4: Convert to sketch-style black lines on white
sketch = 255 - edges
sketch = cv2.medianBlur(sketch, 3)

_, sketch = cv2.threshold(sketch, 220, 255, cv2.THRESH_BINARY)

Step 5: Resize with padding if needed

sketch = cv2.resize(sketch, (512, 512), interpolation=cv2.INTER_AREA)

return sketch

Main

try:

print(" mem Capturing face (ensure good lighting)...")

face_img, face_rect = capture_face()

print(" Z. Generating refined sketch-style edges...")

edges = sketch_face(face_img, face_rect)

38

cv2.imwrite("sketch_face_output.png", edges)

plt.figure(figsize=(14, 7))
plt.subplot(1, 2, 1)
plt.imshow(face_img)
plt.title("Captured Face", pad=10)

plt.axis('off")

plt.subplot(1, 2, 2)
plt.imshow(edges, cmap='gray')
plt.title("Sketch Style Edges", pad=10)

plt.axis('off")

plt.tight_layout()

plt.show()

print(" §&4 Success! Sketch saved as 'sketch_face_output.png')

except Exception as e:

print(f" X Error: {str(e)}")

12.2 Appendix B — MATLAB Script

function q_trajectory = garm_trajectory clean(image_path)
% Default image if not provided
if nargin < 1
image_path = 'sketch_face_output.png';
end

% Load and convert to grayscale
sketch = imread(image_path);

39

if size(sketch, 3) ==
sketch = rgb2gray(sketch);
end

% Binarize and invert
binary = imbinarize(sketch);
binary = ~binary;

% Find contours

contours = bwboundaries(binary, 'noholes');
valid = cellfun(@(c) size(c,1) > 3, contours);
contours = contours(valid);

% Image size
img_h = size(binary, 1);
img_w = size(binary, 2);

% Drawing and lifting positions
X_draw = 0.525; % Marker touches board here
X_lift = 0.49; % Pull back to lift marker safely

% Drawing dimensions (face layout in Y-Z)
Z_center = 0.462;

Z_span = 0.28;

Z_min = Z_center - Z_span/2;

aspect img w / img_h;
Y_span aspect * Z_span;
Y_min = -Y_span/2;

% Drawing parameters
pen_down_offset = ©0.005; % Extra push when drawing
pen_up_clearance = 0.015; % Clearance when lifted

% Trajectory building with pen-up handling
trajectory = [];
pause_frames = 15;

y_prev = 0; z_prev = Z_center; % initialize
for i = 1:1length(contours)
¢ = contours{i};
if size(c,1) >= 3 && size(c,1) <= 12
¢ = smoothdata(c, 1, 'movmean', 3); % Smooth contour path

end
y norm = c(:,2) / img_w;
y_norm = 1 - y norm;

z_norm = (img_h - c(:,1)) / img_h;

y = y_norm * Y_span + Y_min;

z = z_norm * Z span + Z_min - 0.012;

z(z < 90.40) = z(z < 0.40) - 0.003; % Gently push down the bottom zone

x = X_draw * ones(size(y)); % All points on drawing surface
% Adaptive X push based on Z rang

40

% Smooth Z-based compensation using linear interpolation
z_compensation = zeros(size(z));
Z_range = z; % use the current Z values directly

z_compensation(z_range < 0.39) = 0.009; % Very bottom
z_compensation((z_range >= 0.39) & (z_range < 0.41)) = 0.008; % Lower mid

z_compensation((z_range >= 0.41) & (z_range < 0.43)) = 0.0075; % Mid
z_compensation((z_range >= 0.43) & (z_range < 0.465)) = 0.004; % Upper mid
z_compensation(z_range >= 0.465) = 0.0015; % Topmost

%

y_compensation = zeros(size(y));

left_y mask =y < -0.039; % Robot right side (image left)
right_y mask =y > 0.831; % Robot left side (image right)
y_compensation(left_y mask) = +0.0020; % Too much contact
y_compensation(right_y mask) = -0.0018; % Less contact

% Apply combined X shift
X = X + z_compensation + y_compensation;

stroke = [x, vy, z];
if ~isempty(trajectory)
% Insert pen-up: pull back in X only
lift_away = [linspace(X_draw, X_lift, pause_frames)',
repmat(y_prev, pause_frames, 1),
repmat(z_prev, pause_frames, 1)];

move_to = [repmat(X_lift, pause_frames, 1), .
linspace(y_prev, y(1), pause_frames)',
linspace(z_prev, z(1), pause frames)'];

return_forward = [linspace(X_lift, X draw, pause_frames)',
repmat(y(1), pause_frames, 1),
repmat(z(1), pause_frames, 1)];

trajectory = [trajectory; lift_away; move_to; return_forward];
end

trajectory = [trajectory; stroke];
y _prev = y(end); % store end of current stroke for next transition
z _prev = z(end);

end

% Add home position at start and end

home = repmat([0.45, @0, ©.45], 10, 1);
home_end = repmat([0.44, 0, 0.45], 10, 1);
%

trajectory = [home; trajectory; home_end];

% Time vector
t = linspace(@, 0.015*(size(trajectory,1)-1), size(trajectory,1))’;

% Structure for Simulink

41

g_trajectory = struct();
g_trajectory.time = t;
g_trajectory.signals.values = trajectory;
g_trajectory.signals.dimensions = 3;

% Plot check

figure('Name', 'Board-Safe Face Sketch Trajectory');
subplot(1,2,1);

imshow(sketch); title('Original Sketch');

subplot(1,2,2);

scatter3(trajectory(:,1), trajectory(:,2), trajectory(:,3), 10, trajectory(:,1),
'filled'); % color = X offset

hold on;

scatter3(trajectory(1,1), trajectory(1,2), trajectory(1,3), 50, 'g', 'filled');
% Start point

scatter3(trajectory(end,1)+0.001, trajectory(end,2), trajectory(end,3), 50, 'r',
'filled'); % End point

xlabel('X (m)"'); ylabel('Y (m)'); zlabel('Z (m)');

title('Trajectory with X-Forward Color Map');

axis equal; grid on; view(3);

colorbar; % Shows the X forward bias level
end

12.3 Appendix 3 — Simulink Model

Milan - Follow
QArm

G*D PQUARC ﬁ

nnnnnnnnnnnnnnn

e
I S

phi_prev

PPPPPPP

42

